Computational Model Library

Displaying 10 of 1038 results for "Clint A Penick" clear search

Both models simulate n-person prisoner dilemma in groups (left figure) where agents decide to C/D – using a stochastic threshold algorithm with reinforcement learning components. We model fixed (single group ABM) and dynamic groups (bad-barrels ABM). The purpose of the bad-barrels model is to assess the impact of information during meritocratic matching. In the bad-barrels model, we incorporated a multidimensional structure in which agents are also embedded in a social network (2-person PD). We modeled a random and homophilous network via a random spatial graph algorithm (right figure).

A Double-Auction Equity Market For a Single Firm with AR1 Earnings

Eric Weisbrod | Published Monday, December 13, 2010 | Last modified Saturday, April 27, 2013

This is a final project for the class AML 591 at Arizona State University. I have done a small amount of bug-checking, but overall the project represents only a half of a semester’s work, so proceed w

ManPraSim: A Management Practice Simulation

peer-olaf_siebers | Published Wednesday, February 23, 2011 | Last modified Saturday, April 27, 2013

This simulation model is associated with the journal paper “A First Approach on Modelling Staff Proactiveness in Retail Simulation Models” to appear in the Journal of Artificial Societies and Social Simulation 14 (2) 2. The authors are Peer-Olaf Siebers (pos@cs.nott.ac.uk) and Uwe Aickelin (uxa@cs.nott.ac.uk).

A model of circular migration

Anna Klabunde | Published Wednesday, August 07, 2013 | Last modified Wednesday, February 17, 2016

An empirically validated agent-based model of circular migration

A test-bed ecological model

Bruce Edmonds | Published Sunday, May 04, 2014 | Last modified Wednesday, May 15, 2019

This is a multi-patch meta-population ecological model. It intended as a test-bed in which to test the impact of humans with different kinds of social structure.

A Simulation of Entrepreneurial Spawning

Mark Bagley | Published Wednesday, June 08, 2016 | Last modified Friday, June 30, 2017

Industrial clustering patterns are the result of an entrepreneurial process where spinoffs inherit the ideas and attributes of their parent firms. This computational model maps these patterns using abstract methodologies.

Adoption as a social marker

Paul Smaldino | Published Monday, October 17, 2016

A model of innovation diffusion in a structured population with two groups who are averse to adopting a produce popular with the outgroup.

Customers going to a restaurant

hdouss | Published Tuesday, September 25, 2018

The model is about customers going to a restaurant when they are hungry. They wait in the queue if no tables are available. Customers can leave the restaurant and got upset and decide to never return to the restaurant. The model tries to show 2 things: 1.the main caracteristics of the people that decided to never return to the restaurant and 2.the main factors that can impact the total number of customers that decided to never return to the restaurant.

Importing a Roman transport network

Tom Brughmans | Published Sunday, September 30, 2018

A draft model teaching how a Roman transport model can be imported into Netlogo, and the issues confronted when importing and reusing open access Roman datasets. This model is used for the tutorial:
Brughmans, T. (2018). Importing a Roman Transport network with Netlogo, Tutorial, https://archaeologicalnetworks.wordpress.com/resources/#transport .

Organizations are complex systems comprised of many dynamic and evolving interaction patterns among individuals and groups. Understanding these interactions and how patterns, such as informal structures and knowledge sharing behavior, emerge are crucial to creating effective and efficient organizations. To explore such organizational dynamics, the agent-based model integrates a cognitive model, dynamic social networks, and a physical environment.

Displaying 10 of 1038 results for "Clint A Penick" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept