Displaying 10 of 74 results for "John C Moore" clear search
Hello,
My name is Roberto and I am a graduate student at The Pennsylvania State University. I am in the “Information Sciences - Cybersecurity and Information Assurance program”, through which I discovered my interest in ABM. I am conducting my capstone research project on how to make ABM more effective in the disaster recovery planning process of IT companies. I am currently looking for interview candidates to conduct my research. If you or anyone you know have experience using ABM for disaster recovery planning in IT or tech, please reach out!
I learned about ABM through the Intelligent Agents course at Penn State, where we modeled everything from terrorist attacks to social relationships. I was immediately interested in ABM due to the potential and capabilities that it provides in so many areas. I hope to make ABM more popular in IT disaster recovery planning through my research, while learning more about ABM myself.
Cyber security
Agent-Based Modeling
Information Technology
Disaster Recovery
Biographical Sketch
(a) Professional Preparation
Brigham Young University Statistics & Computer Science B.S. 1986
University of North Carolina Chapel Hill Biostatistics M.S. 1988
North Carolina State University Biomathematics & Entomology Ph.D. 1997
(b) Appointments
Associate Professor 2006-current: Brigham Young University Department of Biology
Assistant Professor 2000-2006: Brigham Young University Department of Integrative Biology
Research Scientist 1997-1999: Agriculture Research Service-USDA Pacific Basin Agricultural Research Center.
(c) Publications
i. Five most relevant publications
Ahmadou H. Dicko, Renaud Lancelot, Momar Talla Seck, Laure Guerrini, Baba Sall, Mbargou Low, Marc J.B. Vreysen, Thierry Lefrançois, Fonta Williams, Steven L. Peck, and Jérémy Bouyer. 2014. Using species distribution models to optimize vector control: the tsetse eradication campaign in Senegal. Proceedings of the National Academy of Science. 11 (28) : 10149-10154
Peck, S. L. 2014. Perspectives on why digital ecologies matter: Combining population genetics and ecologically informed agent-based models with GIS for managing dipteran livestock pests. Acta Tropica. 138S (2014) S22–S25
Peck, S. L. and Jérémy Bouyer. 2012. Mathematical modeling, spatial complexity, and critical decisions in tsetse control. Journal of Economic Entomology 105(5): 1477—1486.
Peck, S. L. 2012. Networks of habitat patches in tsetse fly control: implications of metapopulation structure on assessing local extinction probabilities. Ecological Modelling 246: 99–102.
Peck, S. L. 2012. Agent-based models as fictive instantiations of ecological processes.” Philosophy & Theory in Biology. Vol. 4.e303 (2012): 12
ii. Five other publications of note
Peck, S. L. 2008. The Hermeneutics of Ecological Simulation. Biology and Philosophy 23:383-402.
K.M. Froerer, S.L. Peck, G.T. McQuate, R.I. Vargas, E.B. Jang, and D.O. McInnis. 2010. Long distance movement of Bactrocera dorsalis (Diptera: Tephritidae) in Puna, Hawaii: How far can they go? American Entomologist 56(2): 88-94
Peck, S. L. 2004. Simulation as experiment: a philosophical reassessment for biological modeling. Trends in Ecology and Evolution 19 (10): 530 534
Storer N.P., S. L. Peck, F. Gould, J. W. Van Duyn and G. G. Kennedy. 2003 Sensitivity analysis of a spatially-explicit stochastic simulation model of the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton. Economic Entomology. 96(1): 173-187
Peck, S. L., F. Gould, and S. Ellner. 1999. The spread of resistance in spatially extended systems of transgenic cotton: Implications for the management of Heliothis virescens (Lepidoptera: Noctuidae). Economic Entomology 92:1-16.
I’m a Research Associate in Computational Social Science at Durham University working on a project that intends to produce more realistic artificial social networks (RASN) for simulation by creating a taxonomy of existing generator papers, accessible as an interactive, open-access database, in addition to exploring the interdependencies of social network’s structural properties. I obtained my PhD from University of Glasgow in (2023) where I was working on modelling national identity polarisation on social media platforms using ABMs.
agent-based models, social networks, echo chambers, polarisation
Julia, R, NetLogo, Python
Welcome to my Flekosteel review project. I am interested in engaging more people in the natural ways of joints treatment.
Anna Pagani is an architect and doctoral researcher under the supervision of Prof. Claudia R. Binder in the interdisciplinary laboratory for Human-Environment Relations in Urban Systems (HERUS) at École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. In her PhD, she works closely with tenants, housing providers and practitioners to provide housing that is not only environmentally but also socioculturally sustainable.
Her research interests revolve around the relationship between the human and material components of the built environment, and more specifically on the introduction of a systems perspective to housing studies.
Hi, I am John Smith, I am working as a technical manager at email support. I have 3 years of experience in this field. If you have any problems related to the Roadrunner email settings, then please contact us for help related to email problems.
Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.
I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.
While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.
Professor, School of Human Evolution & Social Change
Professor, School of Complex Adaptive Systems
Affiliate Professor, School of Earth and Space Exploration
Arizona State University
My interests center around long-term human ecology and landscape dynamics with ongoing projects in the Mediterranean (late Pleistocene through mid-Holocene) and recent work in the American Southwest (Holocene-Archaic). I’ve done fieldwork in Spain, Bosnia, and various locales in North America and have expertise in hunter/gatherer and early farming societies, geoarchaeology, lithic technology, and evolutionary theory, with an emphasis on human/environmental interaction, landscape dynamics, and techno-economic change.
Quantitative methods are critical to archaeological research, and socioecological sciences in general. They are an important focus of my research, especially emphasizing dynamic modeling, spatial technologies (including GIS and remote sensing), statistical analysis, and visualization. I am a member of the open source GRASS GIS international development team that is making cutting edge spatial technologies available to researchers and students around the world.
Displaying 10 of 74 results for "John C Moore" clear search