Displaying 8 of 8 results for "Rallou Thomopoulos" clear search
performance of urban water service provision, high levels of inequities and inefficiency persist. In terms of water distribution and cost, these undesirable patterns have a high impact on peri-urban areas usually populated by marginalized and poor populations. The high levels of Non-Revenue Water (NRW), together with the existence of corrupt practices and mismanagement of water utilities, remain a highly controversial issue.
This situation confronts rent-seeking theory directly, explaining the performance-corruption relationship (Repetto, 1986). The presumption is that low performance in water supply service provision results from corruption because rent-seeking occurs. Hence, the implementation of performance-oriented reforms in the water supply sector, such as regulation or private sector participation, will reduce corruption, increasing the efficiency of water service provision. Nevertheless, latest evidence shows that “key elements of good political governance have a positive effect on the access to water services in developing countries. In turn, private sector participation has little influence other than increasing internal efficiency of water providers” (Krausse, 2009).
Indeed the relation between governance, corruption and performance seems to be more complex than theory wants to acknowledge. It must be reviewed further than a simple cause-effect relationship. It appears that poor management of water utilities, evidenced by high levels of NRW, justifies new investments. Such practices can be encouraged by an “opportunistic management”, whilst at the same time maintaining an influential “hydrocratic elite” in the sphere of water control.
The present research proposal aims to understand the relation between mismanagement and corruption of water control practices in water supply service provision. The research examines how this relationship affects the performance of water service provision and relates to water supply governance models at municipal peri-urban level in three African countries.
To understand the mismanagement-corruption relationship, we look at different case studies of water supply service provision in Senegal, Ghana and Kenya. Each case represents a different governance model in terms of management practices, institutional and organizational settings, and the actors in place, which affects the performance of water service provision in terms of allocative efficiency and access to water (equity). Whether regulation, decentralization and private sector participation constitute possible ways to reduce corruption is examined in the context of water sector reform.
In a second step, we propose a theoretical model based on Agent Based Modelling (ABM) (Pahl-Wostl, 2007) to reproduce complex social networks under a Socio-Ecological System (SES) framework approach. The model will allow us to test whether collaborative governance in the form of collective action in a participatory and negotiated decision-making process for water control, can reduce corruption and increase performance.
The present research benefits from the project “Transparency and Integrity in Service Delivery in Sub-Saharan Africa”. This project, carried out by Transparency International (TI) in 8 Sub-Saharan countries, aims to increase access to education, health and water by improving transparency and integrity in basic service delivery. The proposal retains focus on Senegal, Ghana and Kenya in the water sector.
Key words: water control, mismanagement, corruption, performance, collaborative governance, modelling, collective action, negotiation, participation
Volker Grimm currently works at the Department of Ecological Modelling, Helmholtz-Zentrum für Umweltforschung. Volker does research in ecology and biodiversity research.
How to model it: Ecological models, in particular simulation models, often seem to be formulated ad hoc and only poorly analysed. I am therefore interested in strategies and methods for making ecological modelling more coherent and efficient. The ultimate aim is to develop preditive models that provide mechanstic understanding of ecological systems and that are transparent and structurally realistic enough to support environmental decision making.
Pattern-oriented modelling: This is a general strategy of using multiple patterns observed in real systems as multiple criteria for chosing model structure, selecting among alternative submodels, and inversely determining entire sets of unknown model parameters.
Individual-based and agent-based modelling: For many, if not most, ecological questions individual-level aspects can be decisive for explaining system-level behavior. IBM/ABMs allow to represent individual heterogeneity, local interactions, and/or adaptive behaviour
Ecological theory and concepts: I am particularly interested in exploring stability properties like resilience and persistence.
Modelling for ecological applications: Pattern-oriented modelling allows to develop structurally realistic models, which can be used to support decision making and the management of biodiversity and natural resources. Currently, I am involved in the EU project CREAM, where a suite of population models is developed for pesticide risk assessment.
Standards for model communication and formulation: In 2006, we published a general protocol for describing individual- and agent-based models, called the ODD protocol (Overview, Design concepts, details). ODD turned out to be more useful (and needed) than we expected.
IRPact - An integrated agent based modeling approach in innovation diffusion
Goal: The goal of IRPact is to develop a flexible and generic innovation-diffusion ABM (agent-based modelling) framework, based on requirements derived from a literature analysis. The aim of IRPact is to allow for modeling a large number of application contexts and questions of interest.
It provides a formal model (framework) as well as a software implementation in order to assist modelers with a basic infrastructure for their own research.
Conceptually it is thought to be part of the IRPsim (https://irpsim.uni-leipzig.de), with the vision to bring together rational approaches and cognitive modeling in an integrated approach within the context of sustainable energy markets.
Hallo! Mein Name ist Lukas Heck. Ich bin leidenschaftlich über Spiele. Ich weiß, dass es schwer ist, ein sicheres Casino mit Qualitätsspielen zu finden. Wenn Sie auf der Suche nach Spaß sind, dann sind die Endorphina Spielautomaten ein guter Weg, den Sie einschlagen sollten. Mit mehr als 100 Spielen in seiner Sammlung gibt es eine Menge zur Auswahl. Und diese nutzen alle ihre faszinierenden Themen, die der Entwickler perfekt gestaltet.
Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.
I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.
While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.
I am a spatial (GIS) agent-based modeler i.e. modeler that simulates the impact of various individual decisions on the environment. My work is mainly methodological i.e. I develop tools that make agent-based modeling (ABM) easier to do. I especially focus on developing tools that allow for evaluating various uncertainties in ABM. One of these uncertainties are the ways of quantifying agent decisions (i.e. the algorithmic representation of agent decision rules) for example to address the question of “How do the agents decide whether to grow crops or rather put land to fallow?”. One of the methods I developed focuses on representing residential developers’ risk perception for example to answer the question: “to what extent is the developer risk-taking and would be willing to build new houses targeted at high-income families (small market but big return on investment)?”. Other ABM uncertainties that I evaluate are various spatial inputs (e.g. different representations of soil erosion, different maps of environmental benefits from land conservation) and various demographics (i.e. are retired farmers more willing to put land to conservation?). The tools I develop are mostly used in (spatial) sensitivity analysis of ABM (quantitative, qualitative, and visual).