Displaying 10 of 230 results for "Coen Van Wagenberg" clear search
I am an Associate Professor of Data Analytics at Trinity Business School, Trinity College Dublin, The University of Dublin and a Senior Fellow of the Higher Education Academy. I was the Director of Postgraduate Teaching at the Department of Management Science, Lancaster University Management School overseeing MSc programmes in Business Analytics, Management Science and Marketing Analytics, Logistics and Supply Chain Management, e-Business and Innovation, and Project Management.
My research interests lie in the areas of predictive analytics using simulation. I am particularly interested in simulation modelling methodology (symbiotic simulation, hybrid modelling, agent-based simulation, discrete-event simulation) with applications in operations and supply chain management (e.g. hospital, manufacturing, transportation, warehouse) and social dynamics (e.g. diffusion of perception). Currently, I am the associate editor of the Journal of Simulation and the secretary of The OR Society‘s Special Interest Group in Simulation. I am the track coordinator of Agent-Based Simulation for the Winter Simulation Conference 2018.
I am an environmental economist at UFZ - Helmholtz Centre for Environmental Research in Leipzig, Germany. I did my PhD (Dr. rer. pol.) in environmental economics at the Martin Luther University Halle-Wittenberg in 2017. Before that, I received my master’s (2013; economics) and bachelor’s degrees (2010; cultural studies) from the same university.
My research focus is on the economic analysis of agri-environmental policy instruments as means to navigate ecosystem service trade-offs in multifunctional landscapes. In this context, I am particularly interested in identifying policy instruments and instrument mixes allowing to align societal preferences with biophysical potential of landscapes to provide multiple ecosystem services. Here, the mutual relationship between regulatory and incentive-based instruments is of much interest. Using agent-based modelling, but also more qualitative approaches, I look at the emerging landscape-level patterns that result from various policy mixes given realistic descriptions of farmers’ behaviour and institutional settings.
My research is focused on understanding the importance of spatial and temporal environmental variability on communities and populations. The key question I aim to address is how the anthropogenic impacts, such as disturbances of individual animals or changed landscape heterogeneity associated with climate changes, influence the persistence of species. The harbour porpoise is an example of a species that is influenced by anthropogenic disturbances, and much of my research has focused on how the Danish porpoise populations are influenced by noise from offshore constructions. I use a wide range of modelling tools to assess the relative importance of different sources of environmental variation, including individual-based/agent based models, spatial statistics, and classical population models. This involves development of computer programs in R and NetLogo. In addition to my own research I currently supervise three PhD students and participate in the management of Department of Bioscience at Aarhus University.
My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.
It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (http://www.behaviorsearch.org/)
I obtained a PhD in database information theory from the University of the West of Scotland in 2015, and have been a researcher at the James Hutton Institute ever since. My areas of research are agent-based-modelling (ABM), data curation, effective use of infrastructure as a service (IaaS), and semantic information representation and extraction using formal structures such as computerised ontologies, relational databases and any other structured or semi-structured data representations. I primarily deal with social and agricultural models and was originally taken on in the role of knowledge engineer in order to create the ontology for the H2020 project, Green Lifestyles, Alternative Models and Upscaling Regional Sustainability (GLAMURS). Subsequent work, for the Scottish Government has involved the use of IaaS, more commonly referred to as the “cloud” to create rapidly deployable and cheap alternatives to in-house high-performance computing for both ABM and Geographical Information System models.
It is the mixture of skills and interests involving modelling, data organisation and computing infrastructure expertise that I believe will be highly apposite in the duties associated with being a member of the CoMSES executive. Moreover, prior to joining academia, I spent about 25 years as a developer in commercial IT, in the agricultural, entertainment and banking sectors, and feel that such practical experience can only benefit the CoMSES network.
I studied Molecular Biology and Genetics at Istanbul Technical University. During my undergraduate studies I became interested in the field of Ecology and Evolution and did internships on animal behaviour in Switzerland and Ireland. I then went on to pursue a 2-year research Master’s in Evolutionary Biology (MEME) funded by the European Union. I worked on projects using computer simulations to investigate evolution of social complexity and human cooperation. I also did behavioural economics experiments on how children learn social norms by copying others. After my Master’s, I pursued my dream of doing fieldwork and investigating human societies. I did my PhD at UCL, researching cultural evolution and behavioural adaptations in Pygmy hunter-gatherers in the Congo. During my PhD, I was part of an inter-disciplinary Hunter-Gatherer Resilience team funded by the Leverhulme Trust. I obtained a postdoctoral research fellowship from British Academy after my PhD. I am currently working as a British Academy research fellow and lecturer in Evolutionary Anthropology and Evolutionary Medicine at UCL.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
S.R. Aurora, also known as Mai P. Trinh, is an Assistant Professor of Management at The University of Texas Rio Grande Valley. Her interdisciplinary work intersects leadership, complex systems science, education, technology, and inclusion. Her research harnesses technology to cultivate future leaders and helps people thrive in our volatile, uncertain, complex, and ambiguous (VUCA) high-tech world, aligning with four United Nations’ sustainable development goals: Quality education (#4), Gender equality (#5), Decent work and economic growth (#8), and Reduced inequalities (#10). She has published in top-tiered peer-reviewed journals such as The Leadership Quarterly and The Academy of Management Learning and Education and received multiple national and international awards for her research, teaching, and mentoring. Dr. Aurora earned her doctoral degree in Organizational Behavior from the Weatherhead School of Management at Case Western Reserve University in 2016.
Leader development, leading complex systems, agent-based modeling, experiential learning, innovations in online education
Lu Ping is a dedicated researcher in interdisciplinary fields including artificial intelligence (AI), digital economy, technological innovation, and industrial economics. Currently serving as an Associate Research Fellow at the China Academy of Information and Communications Technology (CAICT), Lu Ping focuses on examining the impacts of digital technologies (e.g., AI, big data, and IoT) on economic growth, industrial ecosystems, policy formulation, and societal ethics through multidimensional data modeling and empirical research.
Representative Academic Contributions:
1. AI Development and Societal Implications
A Brief History of Artificial Intelligence Development in China (2017): Explored the technological evolution and policy-driven pathways of China’s AI industry.
Ethical Dilemmas Faced by AI Algorithms (2018): Analyzed ethical challenges such as algorithmic bias and data privacy, proposing governance frameworks.
A Brief History of the Evolution of Smart Hardware in China (2018): Systematically reviewed the technological iterations and market dynamics of China’s smart hardware sector.
2.Technological Innovation and Industrial Economics
An Empirical Analysis of Technological Innovation Driving Growth in Internet Companies: Evidence from A-Share Listed Internet Firms in Shanghai and Shenzhen (2019).
Research on Competitiveness Measurement of Frontier Emerging Industries Based on Data Envelopment Analysis (DEA) Models (2019).
3.Digital Economy and Market Behavior
Correlation Analysis of Crowdfunding Behavior and Funding Performance for Internet Products: A Bayesian Approach Based on JD.com Crowdfunding Data (2018): Uncovered nonlinear relationships between user participation and project success rates using crowdfunding platform data.
Analyzing the Effects of Developer and User Behavior on Mobile App Downloads (2019): Built predictive models for app market performance based on user behavior data.
4.Policy Simulation
General Equilibrium Analysis of Beijing’s Water Supply and Consumption Policies: A Computable General Equilibrium (CGE) Model-Based Approach (2015).
Impact Analysis of EU Food Safety Standards on China’s Food Industry: A Dynamic Global Trade Analysis Project (GTAP) Model-Based Study (2015).
Academic Contributions:
Pioneered interdisciplinary paradigms in industrial economics research by integrating perspectives from econometrics, data science, and sociology. Published high-impact research in AI ethics, digital economy policies, and resource-environmental economics, providing decision-making references for academia and policymakers.
My research focuses on the interdisciplinary nexus of artificial intelligence (AI), digital economy, technological innovation, and industrial economics, with an emphasis on understanding how digital technologies reshape economic structures, policy frameworks, and societal norms. Key areas of interest include:
Corinna is a lecturer in the Department of Sociology. She joined the Centre for Research in Social Simulation at the in August 2008 as a Research Fellow. Her academic background is in Philosophy (LSE, BSc MSc) and Computer Science (KCL,PhD), where her PhD Instinct for Detection developed a logic for abductive reasoning.
Currently Corinna is the PI on an AHRC Research Grant on collective reasoning in agent-based modelling, titled Collective Reasoning as a Moral Point of View. Her research interests are decision mechanisms, in particular collective decision-making, context dependency of decisions and methodological and epistemological aspects of agent-based modelling and social simulation. She has applied collective decision making to the analysis to the weakening of the Mafia in Southern Italy within the GLODERS project and published a book Modelling Norms, co-authored with Nigel Gilbert, providing a systematic analysis of the contribution of agent-based modelling to the study of social norms and deviant behaviour. Recently Corinna has been developing a teaching stream within CRESS with a periodically running short course Agent-based Modelling for the Social Scientist and the MSc Social Science and Complexity.
Displaying 10 of 230 results for "Coen Van Wagenberg" clear search