Displaying 10 of 225 results for "Rolf Anker Ims" clear search
Charlotte is an International PhD graduate originally from New Zealand who first came to ASU to pursue her PhD in Anthropology in Aug 2013, thanks to receiving a Science and Innovation Scholarship through the Fulbright Program. She holds a BS majoring in Genetics and a BA majoring in Anthropology from Otago University, New Zealand. She received her Masters in Anthropology in May 2015 and her PhD in Anthropology in 2022 both from ASU. Her main areas of interest are Human Migration, Migration Decision Making, and Environmental Perceptions.
At present she is an Assistant Research Scientist with the School of Complex Adaptive Systems at ASU where she is primarily focused on her roles as the administrative coordinator for CoMSES.NET and The Open Modeling Foundation. She is also adjunct Anthropology faculty at Phoenix College, and Chandler-Gilbert Community College teaching various undergraduate anthropology courses. She is deeply interested in how computational tools and technologies can be used to explore complex adaptive systems, explore possible futures, and better inform policy and decision makers at the leading edge of change.
I am currently enrolled as a graduate student at UC3M, working towards a MS degree in Computational and Applied Mathematics. Upon completing my current program, my intention is to further my education in Applied Economics, with a specific focus on the intersection of Climate and Development Economics.
My research pursuits center around investigating the impacts of climate change on developing nations. Additionally, I am interested in studying the repercussions of fast fashion consumption, examining its effects on working conditions, the environment, and the overall well-being of individuals in the countries where these garments are manufactured. In my ongoing master’s thesis, I employ Agent-Based Modeling to simulate the attitudes of individual consumers towards fast fashion. The model captures behavioral shifts influenced by peers, social media, and governmental factors. This research aligns with my broader interests in comprehending public perspectives on global matters, underscoring the crucial influence of individual attitudes in confronting and finding solutions to these challenges.
Development Economics, Environmental Economics, Sustainability, Environment, Climate change, Climate justice, Energy, Clean Energy, Renewable Energy, Complex systems
As of my incorporation into the Department of Computer Architecture and Operating Systems of the UAB as a postgraduate student, it is possible to divide my scientific-technical career into the following stages:
Simulation of Parallel Applications (1992-99): Focused on the design and development of simulators of parallel applications. This research main objective was the definition of abstractions for parallel programs, based on characterizing tasks and their dependences. Two main abstractions were developed, at first a simpler one, which was easier to parametrize, and, next, a more complex an accurate one. Using these characterizations, several simulation tools were programmed and used in the context of national and European projects. As part of my Master’s thesis, I was involved in the design and development of some of these simulation applications.
National projects: 4, European: 2
International conferences: 3, National: 1, Journal papers: 3
Security in Distributed Systems (2007-12): Focused on the design and development of the FPVA (First Principles Vulnerability Assessment) methodology for the evaluation of vulnerabilities in Grid applications. This methodology clearly defined a set of steps for the assessment of Grid applications vulnerabilities, most of these steps could be automatized or at least supported by specific tools. Jointly with other professors of our group and from the University of Wisconsin, I was involved in the original definition and application of this methodology.
International projects: 2
Master Thesis: 1, Ph.D. Thesis: 1
International conferences: 2, National: 1, Journal papers: 2
Parallel Application Modeling (1999-present): This is my main line of research, aimed at defining high-level performance models for parallel applications. Initially, models were defined for MPI applications with a master-worker and pipeline structure, but later this line has been expanded with the definition of models for memory-intensive OpenMP applications, composed (mix of several structures) applications, applications based on mathematical libraries, distributed data-intensive applications and, finally, applications based on the simulation of agents (ABS) with SPMD structure.
As a result of the work on modeling the performance of ABS parallel systems, we have opened a new line for the definition and implementation of a benchmark for assessing the performance of the parallel simulators generated by well-known platforms, such as FLAME, Repast-HPC or D-Mason. In addition, the knowledge we have gained on this topic has opened new ways of collaboration for optimizing real parallel ABS in the health sciences area (tumor growth and infection spread).
National projects: 12, European: 1
International conferences: 17, National: 4, Journal papers: 11
International Presentations: 4
Parallel Applications Tuning Tools (2010-present): Focused on the design and development of tools for automatic tuning and, in some cases, also dynamic tuning of parallel applications. These tools allow the integration of performance models in the form of external components provided by the analyst. For this reason, this research line is tightly coupled with the Parallel Application Modeling one. The two main tools developed totally or partially by our group are Monitoring Analysis and Tuning Environment-MATE (and its highly scalable evolution ELASTIC) and Periscope Tuning Framework-PTF.
National projects: 2, European: 1
International conferences: 11, Journal papers: 2
Tools: MATE, ELASTIC, PTF
International Presentations: 5
Anna Sikora is an Associate Professor in the Computer Architecture and Operating System Department at Autonomous University of Barcelona (UAB).
She got the BS degree in computer science in 1999 from Technical University of Wroclaw (Poland). She got the MSc in computer science in 2001 and in 2004 the PhD in computer science, both from Autonomous University of Barcelona (Spain).
Since 1999 her investigation is related to parallel and distributed computing. Her current main interests are focused on high performance parallel applications, performance models, automatic performance analysis and dynamic tuning. She has been involved in programming tools for automatic and dynamic performance tuning on cluster and Grid environments, as well as in exa-scale systems.
High performance parallel computing, parallel applications, performance models, automatic performance analysis, dynamic tuning. Performance tools for automatic and dynamic performance tuning on HPC systems. Agent-based modelling systems.
Dr. Andreu Moreno Vendrell got the BS degree in Telecommunications Engineering in 1995 and the PhD in Telecommunications Engineering in 2000, both from Universitat Politècnica de Catalunya (Spain). Since 2005 his research is related to parallel and distributed computing. His main interests are focused on high performance parallel applications, automatic performance analysis and dynamic tuning, and agent based simulation systems. He has been involved in the definition of performance models for automatic and dynamic performance tuning and in the development of a new benchmark for agent based frameworks. He is lecturer at the Escola Universitària Salesiana de Sarrià, associated college of Universitat Autònoma de Barcelona. He is IEEE member.
Agent-based systems
Dr. Jiin Jung is a social psychologist and Assistant Professor in the Department of Psychology at Lehigh University. She also serves Secretary of the Computational Social Science of the Americas. Dr. Jung’s research focuses on how minority voices influence society and drive changes in social norms and cultural practices. She directs the Group Dynamics & Social Change Lab, which is dedicate to investigating psychological explanations for social change. Her lab explores topics such as minority influence on social change, minority responses to identity uncertainty and threat, and minority contributions to collective adaptation. Dr. Jung engages in policy initiatives geared toward democracy and gender equity.
Minority Influence on Social Change
Computational Social Psychology
Science is most interesting when it subverts expectations. As a medic in the army, I used to think of the world in terms of strict hierarchies; some central governing agency gives orders, which trickle down the chain of command. However, it turns out that most biological systems do not work this way, instead distributing control among the members of the group (be they genes, cells, animals). I have since dedicated my research career to understanding how this works. Currently, I am a postdoctoral fellow at Arizona State University in the School of Complex Adaptive Systems, which is the same university where I received my PhD.
I am broadly interested in using both experimental and theoretical tools to uncover the cognitive mechanisms that underlie self-organization in complex adaptive systems. I am also interested in the optimal design of experiments for the biological sciences.
In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’
To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.
AJE (American Journal Experts) offers an Automated Grammar Check Tool designed to help authors and professionals improve the quality of their writing with ease and accuracy. This advanced tool automatically detects and corrects grammatical errors, punctuation issues, and sentence structure problems, ensuring that your documents are polished and professional. Ideal for academic papers, reports, and other written materials, the tool provides real-time suggestions, enhancing both clarity and readability while maintaining the author’s original voice. AJE’s Automated Grammar Check Tool is user-friendly and time-efficient, making it a valuable resource for individuals and organizations looking to produce error-free, high-quality content. With global accessibility, AJE’s tool supports users in delivering professional writing with confidence.
Displaying 10 of 225 results for "Rolf Anker Ims" clear search