https://orcid.org/0000-0002-3903-2507
GitHub more info
I studied Mathematics at Oxford (1979-1983) then did youth work in inner city areas for the Educational Charity. After teaching in Grenada in the West Indies we came back to the UK, where the first job I could get was in a 6th form college (ages 16-18). They sent me to do post16 PCGE, which was so boring that I also started a part-time PhD. The PhD was started in 1992 and was on the meaning and definition of the idea of “complexity”, which I had been pondering for a few years. Given the growth of the field of complexity from that time, I had great fun reading almost anything in the library but I did finally finish it in 1999. Fortunately I got a job at the Centre for Policy Modelling (CfPM) in 1994 with its founder and direction, Scott Moss. We were doing agent-based social simulation then, but did not know it was called this and did not meet other such simulators for a few years. With Scott Moss we built the CfPM into one of the leading research centres in agent-based social simulation in the world. I became director of the CfPM just before Scott retired, and later became Professor of Social Simulation in 2013. For more about me see http://bruce.edmonds.name or http://cfpm.org.
All aspects of social simulation including: techniques, tools, applications, philosophy, methodology and interesting examples. Understanding complex social systems. Context-dependency and how it affects interaction and cognition. Complexity and how this impacts upon simulation modelling. Social aspects of cognition - or to put it another way - the social embedding of intelligence. Simulating how science works. Integrating qualitative evidence better into ABMs. And everything else.
The simulation is a variant of the “ToRealSim OD variants - base v2.7” base model, which is based on the standard DW opinion dynamics model (but with the differences that rather than one agent per tick randomly influencing another, all agents randomly influence one other per tick - this seems to make no difference to the outcomes other than to scale simulation time). Influence can be made one-way by turning off the two-way? switch
Various additional variations and sources of noise are possible to test robustness of outcomes to these (compared to DW model).
In this version agent opinions change following the empirical data collected in some experiments (Takács et al 2016).
Such an algorithm leaves no role for the uncertainties in other OD models. [Indeed the data from (Takács et al 2016) indicates that there can be influence even when opinion differences are large - which violates a core assumption of these]. However to allow better comparison with other such models there is a with-un? switch which allows uncertainties to come into play. If this is on, then influence (according to above algorithm) is only calculated if the opinion difference is less than the uncertainty. If an agent is influenced uncertainties are modified in the same way as standard DW models.
The purpose of the simulation was to explore and better understand the process of bridging between an analysis of qualitative data and the specification of a simulation. This may be developed for more serious processes later but at the moment it is merely an illustration.
This exercise was done by Stephanie Dornschneider (School of Politics and International Relations, University College Dublin) and Bruce Edmonds to inform the discussion at the Lorentz workshop on “Integrating Qualitative and Quantitative Data using Social Simulation” at Leiden in April 2019. The qualitative data was collected and analysed by SD. The model specification was developed as the result of discussion by BE & SD. The model was programmed by BE. This is described in a paper submitted to Social Simulation 2019 and (to some extent) in the slides presented at the workshop.
This is a multi-patch meta-population ecological model. It intended as a test-bed in which to test the impact of humans with different kinds of social structure.
Captures interplay between fixed ethnic markers and culturally evolved tags in the evolution of cooperation and ethnocentrism. Agents evolve cultural tags, behavioural game strategies and in-group definitions. Ethnic markers are fixed.
This is a model of coherency based belief within a dynamic network of individuals. Described in an invited talk on workshop on Coherence, Berlin, 9th July 2016.
This is a complex “Data Integration Model”, following a “KIDS” rather than a “KISS” methodology - guided by the available evidence. It looks at the complex mix of social processes that may determine why people vote or not.
This models provides the infrastructure to model the activity of making. Individuals use resources they find in their environment plus those they buy, to design, construct and deconstruct items. It represents plans and complex objects explicitly.
This is a simplified version of a Complex Model of Voter Turnout by Edmonds et al.(2014). It was developed to better understand the mechanisms at play on that complex model.
Under development.