Computational Model Library

Displaying 10 of 1038 results for "Clint A Penick" clear search

Adoption of a new regulation

Marco Janssen | Published Saturday, January 26, 2019

A group of agents share a resource and agents will become sufficiently motivated to adopt a rule to constraint their freedom if they experience resource scarcity and developed mutual trust relationships.

Landscape connectivity and predator–prey population dynamics

Jacopo Baggio | Published Thursday, November 10, 2011 | Last modified Saturday, April 27, 2013

A simple model to assess the effect of connectivity on interacting species (i.e. predator-prey type)

This is a ridesharing model (Uber/Lyft) of the larger Washington DC metro area. The model can be modified (Netlogo 6.x) relatively easily and be adapted to any metro area. Please cite generously (this was a lot of work) and please cite the paper, not the comses model.

Link to the paper published in “Complex Adaptive Systems” here: https://link.springer.com/chapter/10.1007/978-3-030-20309-2_7

Citation: Shaheen J.A.E. (2019) Simulating the Ridesharing Economy: The Individual Agent Metro-Washington Area Ridesharing Model (IAMWARM). In: Carmichael T., Collins A., Hadžikadić M. (eds) Complex Adaptive Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-20309-2_7

Token Foraging in a Commons Dilemma

Nicholas Radtke | Published Monday, August 31, 2009 | Last modified Saturday, April 27, 2013

The model aims to mimic the observed behavior of participants in spatially explicit dynamic commons experiments.

A Generic Java Learning Classifier Library

Klaus Hufschlag | Published Friday, April 09, 2010 | Last modified Thursday, February 23, 2017

Complete Library for object oriented development of Classifier Systems. See for the concept behind.

A Computational Model of Workers Protest

Jae-Woo Kim | Published Friday, May 13, 2011 | Last modified Saturday, April 27, 2013

We present an agent-based model of worker protest informed by Epstein (2002). Workers have varying degrees of grievance depending on the difference between their wage and the average of their neighbors. They protest with probabilities proportional to grievance, but are inhibited by the risk of being arrested – which is determined by the ratio of coercive agents to probable rebels in the local area. We explore the effect of similarity perception on the dynamics of collective behavior. If […]

A simple emulation-based computational model

Carlos Fernández-Márquez Francisco J Vázquez | Published Tuesday, May 21, 2013 | Last modified Tuesday, February 05, 2019

Emulation is one of the simplest and most common mechanisms of social interaction. In this paper we introduce a descriptive computational model that attempts to capture the underlying dynamics of social processes led by emulation.

A Complex Model of Voter Turnout

Bruce Edmonds Laurence Lessard-Phillips Ed Fieldhouse | Published Monday, October 13, 2014 | Last modified Tuesday, August 18, 2015

This is a complex “Data Integration Model”, following a “KIDS” rather than a “KISS” methodology - guided by the available evidence. It looks at the complex mix of social processes that may determine why people vote or not.

A Model of Iterated Ultimatum game

Andrea Scalco | Published Tuesday, February 24, 2015 | Last modified Monday, March 09, 2015

The simulation generates two kinds of agents, whose proposals are generated accordingly to their selfish or selfless behaviour. Then, agents compete in order to increase their portfolio playing the ultimatum game with a random-stranger matching.

This is a simplified version of a Complex Model of Voter Turnout by Edmonds et al.(2014). It was developed to better understand the mechanisms at play on that complex model.

Displaying 10 of 1038 results for "Clint A Penick" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept