Displaying 10 of 13 results groups clear search
My research centers on isolating how and to what extent political institutions themselves shape policy. I use computational modeling (agent-based and simulation) to gain theoretical leverage on the issue. This approach allows me to place groups of actors with given preferences into different institutional settings in order to gauge the effect of the rules of the game on political outcomes. Most of my research examines the ways in which legislative processes affect issues of political economy, such as income redistribution.
Smarzhevskiy Ivan, born 1961, graduated from the Faculty of Mechanics and Mathematics of Moscow State University in 1983. Ph.D. in Economic Sciences since 2000.
Research interests: individual and collective behavior in the organization, decision making, sociology of small groups.
decision making, sociology of small groups, agent based models
I am fascinated by unraveling water-scarcity patterns. I am an expert in Integrated Assessment Modelling and Water Footprint Assessment. The concepts and tools that I have developed and applied all aim at availing knowledge at scales relevant to decision-makers in the water sector. During my PhD at the University of Twente I evaluated how spatiotemporal patterns of water availability relate to patterns of water use for a river basin in the semi-arid Northeast of Brazil. I have used agent-based modelling and developed the downstreamness concept to analyze the emergence of basin closure. This concept is helpful to water managers for identifying priority locations for intervention inside a river basin system. As a postdoc I continued to evaluate the relation between water use and availability and further broadened my scope to a wider range of related topics.
Environmental Economics, Resource Economics, Behaviour Economics, Social Security/ Health Economics, Sustainability, Development Economics
Currently I develop ABM models to follow up issues raised in my previous research on trade between hunting groups and long-distance trade, territoriality and migration patterns.
My profound interest in networks convinced me to work in these subjects and start my master project on an application of social network analysis for detecting organized fraud in Automobile insurance, which helps to flag groups of fraudsters. The key point of this project is simply to find fraudulent rings, while the most of traditional methods have only taken opportunistic fraud into consideration. My duty in research is to design an algorithm for identifying cyclic components, then to be compared with theoretical ones. This project showed me how networks are used in the analysis of relations.
I am a computational archaeologist interested in how individuals and groups respond to both large scale processes such as climate change and local processes such as violence and wealth inequality. I am currently a PhD Candidate in the Department of Anthropology at Washington State University.
My dissertation research focuses on experimenting with paleoecological data (e.g., pollen) to assess whether or not different approaches are feasible for paleoclimatic field reconstructions. In addition, I will also use pollen data to generate vegetation (biome) reconstructions. By using tree-ring and pollen data, we can gain a better understanding of the paleoclimate and the spatial distribution of vegetation communities and how those changed over time. These data can be used to better understand changes in demography and how people responded to environmental change.
In Summer 2019, I attended the Santa Fe Institute’s Complex Systems Summer School, where I got to work in a highly collaborative and interdisciplinary international scientific community. For one of my projects, I got to merry my love of Sci-fi with complexity and agent-based modeling. Sci-fi agent-based modeling is an anthology and we wanted to build a community of collaborators for exploring sci-fi worlds. We also have an Instagram page (@Scifiabm).
Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.
I am a Professor in the School of Sustainability and the Director of the Center for Behavior, Institutions and the Environment. I want to understand how people solve collective problems at different levels of scale, especially those problems related to sustainability of our environment. Our society experience unprecedented challenged to sustain common resource for future generations at a scale we have never experienced before. What makes groups cooperate? What is the role of information? How does the ecological context affect the social fabric? How do they deal with a changing environment? How can we use these insight to address global challenges? To do this research I combine behavioral experiments, agent-based modeling and case study analysis.
Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.
I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.
While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.
Displaying 10 of 13 results groups clear search