Displaying 10 of 17 results for "Laura Mameli" clear search
My experience is diverse, with research in spatial analyses and GIS, ecosystem modeling, landscape ecology, database management, biogeographical relationships of birds and plants, species/habitat relationships, wildlife and pastoral livestock mobility, spectroscopy, cluster analysis, and telemetry techniques. Research projects are ongoing in Colorado, the contiguous US, Kenya, Mali, and Tibet.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).
The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.
Becky is a Research Associate at the Imperial Centre for Energy Policy and Technology (ICEPT). She investigates economic, social and technical aspects of energy policy in the UK and abroad.
Becky’s current research is focussed on transitions in the UK bioenergy system and on biofuels for aviation. She is involved with two major projects: Bioenergy Value Chains: Whole Systems Analysis and Optimisation, an EPSRC SUPERGEN Bioenergy Challenge Project; and Renewable Jet Fuel Supply Chain Development and Flight Operations (RENJET), a project for EIT Climate-KIC. Becky has also worked on projects for the UK Energy Research Centre – International Renewable Energy Agency (UKERC-IRENA) collaboration, investigating issues such as economic value creation, policy evaluation metrics, innovation theory and rural electrification. She is particularly interested in the role of renewable technologies for developing countries, having lived and worked in Mali and Senegal.
political methodology research covering agent-based modelling and simulation of political phenomena,computational models of political phenomena (political attitudes, elite, corruption, political clientelism, state capture)
M.Sc. Sustainable Development from Uppsala University, Sweden
Research Assistant at Helmholtz-Centre for Environmental Research - UFZ, Germany
PhD Candidate at ESCP Berlin, Germany
Sustainable Development
Systems Analysis
System Thinking
Agent-based Modelling
Rethinking Economics
Displaying 10 of 17 results for "Laura Mameli" clear search