Community

Displaying 8 of 8 results for "Lance Robinson" clear search

Derek Robinson Member since: Wed, Nov 05, 2014 at 03:59 PM Full Member

The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.

To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.

land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling

Justin Lane Member since: Tue, Jan 12, 2016 at 08:40 PM

MA, BA

ABM and religion.

Andrew Lane Member since: Mon, Oct 08, 2018 at 12:12 PM

Kasper Lange Member since: Fri, Apr 24, 2020 at 02:44 PM Full Member

After graduating at the faculty of Industrial Design Engineering at TU Delft, Kasper Lange started working as a Research and Development Engineer in the manufacturing Industry. After a couple of years he decided to dedicate his career to Sustainable Engineering research and education at the Amsterdam University of Applied Sciences (AUAS). In 2015 he received a scholarship from AUAS to start a PhD research project on Design Research for Industrial Symbiosis in Urban Agriculture. Since march 2017, the project is also financed by The Netherlands Organisation for Scientific Research (NWO, project number 023.009.037)

Agent-based modeling, Participatory modeling, Socio-technical systems, Complexity, Sustainability, Circular Economy, Design Science, Action research.

Alice Robinson Member since: Sat, Mar 19, 2022 at 11:27 AM Full Member

vance chen Member since: Thu, Aug 10, 2023 at 10:20 AM

Martin Lange Member since: Wed, Jun 23, 2010 at 07:43 AM

Lee Robinson Member since: Sun, Apr 14, 2024 at 07:22 PM Full Member

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept