Community

Displaying 4 of 74 results system clear search

clif531 Member since: Sat, Apr 21, 2012 at 03:28 AM

Master of Science in Information & Telecommunication Systems, Doctor of Philosophy in Systems Engineering

System of Systems and Complex Systems

Mariam Kiran Member since: Fri, Aug 17, 2012 at 09:06 PM Full Member

PhD Agent based modelling of economic and social systems, MSc (Eng) Advanced software engineering

Dr. Mariam Kiran is a Research Scientist at LBNL, with roles at ESnet and Computational Research Division. Her current research focuses on deep reinforcement learning techniques and multi-agent applications to optimize control of system architectures such as HPC grids, high-speed networks and Cloud infrastructures.. Her work involves optimization of QoS, performance using parallelization algorithms and software engineering principles to solve complex data intensive problems such as large-scale complex decision-making. Over the years, she has been working with biologists, economists, social scientists, building tools and performing optimization of architectures for multiple problems in their domain.

berengere Member since: Wed, Oct 17, 2012 at 02:33 PM

PhD Geography

The aim of this project is to complement the approach developed by UMR-Geographie-Cité (“SimPop” Models), using an approach based on the organization and deployment of multinational corporation networks in urban system. We will simulate the interactions between networks of multinational corporation and the urban system.

Caryl Benjamin Member since: Wed, Dec 12, 2012 at 10:04 AM

BS Community Development

Community assembly after intervention by coral transplantation

The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.

Displaying 4 of 74 results system clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept