Community

Displaying 3 of 73 results for "Hans-Joerg Althaus" clear search

Mariam Kiran Member since: Fri, Aug 17, 2012 at 09:06 PM Full Member

PhD Agent based modelling of economic and social systems, MSc (Eng) Advanced software engineering

Dr. Mariam Kiran is a Research Scientist at LBNL, with roles at ESnet and Computational Research Division. Her current research focuses on deep reinforcement learning techniques and multi-agent applications to optimize control of system architectures such as HPC grids, high-speed networks and Cloud infrastructures.. Her work involves optimization of QoS, performance using parallelization algorithms and software engineering principles to solve complex data intensive problems such as large-scale complex decision-making. Over the years, she has been working with biologists, economists, social scientists, building tools and performing optimization of architectures for multiple problems in their domain.

Gary Polhill Member since: Wed, Sep 05, 2012 at 05:17 PM Full Member

BA (Hons) Computing and Artificial Intelligence (Sussex), Ph. D. Guaranteeing Generalisation in Neural Networks (St. Andrews)

Gary Polhill did a degree in Artificial Intelligence and a PhD in Neural Networks before spending 18 months in industry as a professional programmer. Since 1997 he has been working at the Institute on agent-based modelling of human-natural systems, and has worked on various international and interdisciplinary projects using agent-based modelling to study agricultural systems, lifestyles, and transitions to more sustainable ways of living. In 2016, he was elected President of the European Social Simulation Association, and was The James Hutton Institute’s 2017 Science Challenge Leader on Developing Technical and Social Innovations that Support Sustainable and Resilient Communities.

Caryl Benjamin Member since: Wed, Dec 12, 2012 at 10:04 AM

BS Community Development

Community assembly after intervention by coral transplantation

The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.

Displaying 3 of 73 results for "Hans-Joerg Althaus" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept