Displaying 10 of 104 results for "Mark Orr" clear search
Mario Ureta holds a BSc in Economics from Birkbeck, University of London, a Graduate Diploma in Data Science from the London School of Economics, and an MSc in Data Science and Analytics from Brunel University London. He is currently a PhD student in Computing Science at Birkbeck, University of London. His research focuses on the economic study of individual preferences and decision-making, and on the use of agent-based models as a bridge between economic theory and computational experimentation. Through economic simulation, his work examines how heterogeneous preferences, social interaction, and firm behaviour jointly shape aggregate market outcomes, including non-linear dynamics and tipping points.
My research interests centre on the study of individual preferences in economics and on understanding how preferences evolve through interaction, learning, and social context. I am particularly interested in how seemingly weak or latent preferences—such as attitudes toward environmental attributes, prices, or social norms—can become amplified through feedback mechanisms and generate non-linear aggregate outcomes. A core methodological focus of my work is the use of agent-based modelling and economic simulation as a bridge between economic theory and experimentation. By treating agent-based models as computational laboratories, I explore how heterogeneous preferences, habit formation, peer influence, and firm behaviour interact dynamically, allowing theoretical mechanisms to be tested, stress-tested, and compared under controlled but flexible conditions that are difficult to achieve using purely analytical or empirical approaches.
Hello,
My name is Roberto and I am a graduate student at The Pennsylvania State University. I am in the “Information Sciences - Cybersecurity and Information Assurance program”, through which I discovered my interest in ABM. I am conducting my capstone research project on how to make ABM more effective in the disaster recovery planning process of IT companies. I am currently looking for interview candidates to conduct my research. If you or anyone you know have experience using ABM for disaster recovery planning in IT or tech, please reach out!
I learned about ABM through the Intelligent Agents course at Penn State, where we modeled everything from terrorist attacks to social relationships. I was immediately interested in ABM due to the potential and capabilities that it provides in so many areas. I hope to make ABM more popular in IT disaster recovery planning through my research, while learning more about ABM myself.
Cyber security
Agent-Based Modeling
Information Technology
Disaster Recovery
My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
Improving agent models and architectures for agent-based modelling and simulation applied to crisis management. In particular modelling of BDI agents, emotions, cognitive biases, social attachment, etc.
Designing serious games to increase awareness about climate change or natural disasters; to improve civil engagement in sustainable urban planning; to teach Artificial Intelligence to the general public; to explain social phenomena (voting procedures; sanitary policies; etc).
I have developed several agent-based and cellular automata applications combining agent-based modelling, geographical information systems and visualisation to understand the complex mechanisms of decision making in land use change and environmental stewardship in order to analyse:
• the role of pastoral agriculture in regional development,
• the tradeoffs between land use intensification and water quality,
• the adoption of land-based climate change mitigation practices, and
• the incorporation of cultural values into spatial futures or scenario modelling.
My research uses modeling to understand complex coupled human and natural systems, and can be generally described as computational social science. I am especially interested in modeling water management systems, in both archaeological and contemporary contexts. I have previously developed a framework for modeling general archaeological complex systems, and applied this to the specific case of the Hohokam in southern Arizona. I am currently engaged in research in data mining to understand contemporary water management strategies in the U.S. southwest and in several locations in Alaska. I am also a developer for the Repast HPC toolkit, an agent-based modeling toolkit specifically for high-performance computing platforms, and maintain an interest in the philosophy of science underlying our use of models as a means to approach complex systems. I am currently serving as Communications Officer for the Computational Social Science Society of the Americas.
Displaying 10 of 104 results for "Mark Orr" clear search