Displaying 10 of 74 results for "David Moore" clear search
Ifigeneia Koutiva (female) is a senior environmental engineer, holding a PhD in Civil Engineering (NTUA), a Postgrad Diploma in Water Resources and Environmental Management (Un. of Belgrade - e-learning), an MSc in Environmental Technology (Imperial College London) and an MSc in Mining and Metallurgy Engineering (NTUA). Her PhD was funded by the Greek Ministry of Education through Heracleitous II scholarship. She is currently a postdoctoral scholar of the State Scholarship Foundation (IKY) for 2020 - 2021. She has 10 years of experience in various EU funded research projects, both as a researcher and as a project manager, in the fields of socio-technical simulation, urban water modelling, modelling and assessment of alternative water technologies, artificial intelligence, social quantitative research, KPI and water indicators development and assessment and analysis of large data sets. She is very competent with programming for creating ICT tools for agent based modelling and data analysis tools and she is an experienced user of spatial analysis software and tools. She is also actively involved in the design and implementation of numerous consultation workshops and conferences. She has authored more than 20 scientific journal articles, conferences articles and research reports.
My research interests lay within the interface of social, water and modelling sciences. I have created tools that explore the effects of water demand management policies in domestic urban water demand behaviour and the effects of civil decision making in flood risk management. I am interested in agent based modelling, artificial intelligence techniques, the creation of ABM tools for civil society, Circular Economy, distributed water technologies and overall urban water management.
In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’
To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.
I am a spatial (GIS) agent-based modeler i.e. modeler that simulates the impact of various individual decisions on the environment. My work is mainly methodological i.e. I develop tools that make agent-based modeling (ABM) easier to do. I especially focus on developing tools that allow for evaluating various uncertainties in ABM. One of these uncertainties are the ways of quantifying agent decisions (i.e. the algorithmic representation of agent decision rules) for example to address the question of “How do the agents decide whether to grow crops or rather put land to fallow?”. One of the methods I developed focuses on representing residential developers’ risk perception for example to answer the question: “to what extent is the developer risk-taking and would be willing to build new houses targeted at high-income families (small market but big return on investment)?”. Other ABM uncertainties that I evaluate are various spatial inputs (e.g. different representations of soil erosion, different maps of environmental benefits from land conservation) and various demographics (i.e. are retired farmers more willing to put land to conservation?). The tools I develop are mostly used in (spatial) sensitivity analysis of ABM (quantitative, qualitative, and visual).
My research focuses on pastoral systems. I examine how pastoralists adapt to changing ecological, political and institutional conditions that affect their lives and livelihoods. I have been conducting research with pastoralists in the Far North Region of Cameroon since 1993. The long-term research has allowed me to develop innovative, interdisciplinary research projects with colleagues at the Ohio State University and the University of Maroua in Cameroon. Check out my website for more information about my research, teaching, and other scholarly activities: http://mlab.osu.edu
Pastoral systems, management of common-pool resources, coupled human and natural systems, complex adaptive systems, regime shifts, resilience, ecology of infectious diseases, herder-farmer conflicts, pastoral development, political ecology.
I study human culture and cooperation in relationship to the environment. In particular, I study how social norms, institutions and societies evolve, and how they are influenced by ecological and social forces. I strive to use this research to learn how to better build durable, sustainable and just institutions and societies. I use experimental economics and agent-based modeling to explore these connections, and work with lot of wonderful people.
Dr. Dawn Parker is a professor at the University of Waterloo in the School of Planning. Her research focuses on the development of integrated socio-economic and biophysical models of land-use change. Dr. Parker works with agent-based modeling, complexity theory, geographic information systems, and environmental and resource economics. Her current ongoing projects include Waterloo Area Regional Model (WARM) Urban intensification vs. suburban flight, a SSHRC funded development grant that explores the causal relationships between light rail transit and core-area intensification, and the Digging into Data MIRACLE (Mining relationships among variables in large datasets from complex systems) project.
Displaying 10 of 74 results for "David Moore" clear search