Displaying 10 of 227 results for "Chantal van Esch" clear search
Interested in numerical models and new conceptual ideas, applications from industry to medicine.
I focus on numerical modeling of mechanics of solid materials and cell mechanics. The models that I developed so far address granular matters, bio-fluids, cellular tissues, and individual cells.
I further develop Agent-based Models, which are methods to predict collective behavior from individual dynamics controlled by rules or differential equations. Examples: tumor growth, swarms, crowd movement.
The methods I used are Particle-based methods which offer great flexibility within physical modeling, and can operate in a large range of scales, from atomistic scales (e.g. Molecular Dynamics) to continuum approaches (e.g. Smoothed Particle Hydrodynamics).
Postdoctoral researcher at Institute of Economics, Polish Academy of Sciences and in Macroprudential Research Division at National Bank of Poland. She graduated in Mathematics (Jagiellonian University, Poland) and in Economics (University of Alcala, Spain). In 2017 she obtained Fulbright Advanced Research Award. In the United States, she carried out research on systemic risk and complex systems. Her doctoral dissertation was about the measurement and modeling of systemic risk using simulation methods and complex systems approach (the results to be published by Palgrave Macmillan US). Previously, she gained experience on agent-based modeling while working with Juan Luis Santos on the European Commission FP 7 MOSIPS project (http://www.mosips.eu/).
Mathematics, complex systems, financial modeling, agent-based modeling, econometrics, macroprudential policies, systemic risk, cental banking
My research focuses on building a systemic understanding of coupled human-natural systems. In particular, I am interested in understanding how patterns of land-use and land-cover change emerge from human alterations of natural processes and the resulting feedbacks. Study systems of interest include those undergoing agricultural to urban conversion, typically known as urban sprawl, and those in which protective measures, such as wildfire suppression or flood/storm impact controls, can lead to long-term instability.
Dynamic agent- and process-based simulation models are my primary tools for studying human and natural systems, respectively. My past work includes the creation of dynamic, process-based simulation models of the wildland fires along the urban-wildland interface (UWI), and artificial dune construction to protect coastal development along a barrier island coastline. My current research involves the testing, refinement, extension of an economic agent-based model of coupled housing and land markets (CHALMS), and a new project developing a generalized agent-based model of land-use change to explore local human-environmental interactions globally.
Displaying 10 of 227 results for "Chantal van Esch" clear search