Displaying 10 of 79 results for "Benjamin Davies" clear search
Exhaustible natural resources
Fishery resources
Network game theory models
Agent-based models
PhD student in the Agent Systems Research Group of the Department of Artificial Intelligence at the VU University Amsterdam. Current research focuses on Modeling Human Behavior and exploring Serious Games interactions with humans.
Agent based modelling in water management, especially focused in extreme phenomena such floods and droughts.
I study human culture and cooperation in relationship to the environment. In particular, I study how social norms, institutions and societies evolve, and how they are influenced by ecological and social forces. I strive to use this research to learn how to better build durable, sustainable and just institutions and societies. I use experimental economics and agent-based modeling to explore these connections, and work with lot of wonderful people.
My interests are focused on the development of new methodologies capable of exploring the complex relations between time, space and human behavior. Simulation, game theory and spatial analysis are some of the techniques that I use to explore different research questions, from the relation between environment and culture to the evolution of warfare.
I’m also the project manager of Pandora, an open-source ABM platform specifically designed for executing large scale simulations in High-Performance Computing environments.
Dr. Dawn Parker is a professor at the University of Waterloo in the School of Planning. Her research focuses on the development of integrated socio-economic and biophysical models of land-use change. Dr. Parker works with agent-based modeling, complexity theory, geographic information systems, and environmental and resource economics. Her current ongoing projects include Waterloo Area Regional Model (WARM) Urban intensification vs. suburban flight, a SSHRC funded development grant that explores the causal relationships between light rail transit and core-area intensification, and the Digging into Data MIRACLE (Mining relationships among variables in large datasets from complex systems) project.
Community assembly after intervention by coral transplantation
The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.
Leonardo Grando is a Ph.D. Student at the University of Campinas (UNICAMP) in Brazil. I am interested in complex systems, agent-based simulation, artificial intelligence, the Internet of Things, programming, and machine learning tools. I have expertise in Netlogo, Python, R, Latex, SQL, and Linux tools.
My Ph.D. work project is an IoT devices (UAVs) swarm agent-based modeling simulation (ABMS) aiming the perpetual flight. The workflow is Netlogo to ABMS simulate, Python and R to data analysis, and I use Latex for my thesis writing.
Displaying 10 of 79 results for "Benjamin Davies" clear search