Displaying 10 of 238 results agent based clear search
Dr. Aaron Bramson is principal investigator of the AI Strategy Center of GA technologies in Tokyo, Japan, as well as an Affiliate Researcher in the Department of General Economics of Ghent University in Belgium. His research specialty is complexity science, especially methodologies for modeling complex systems. Research topics span across disciplines: measures of polarization and diversity, belief measure interoperability, integrating geospatial and network analyses for measuring walkability and neighborhood identification, and myriad applications in artificial intelligence and data visualization. He received his Ph.D. from the University of Michigan in a joint program with the departments of Political Science and Philosophy as well as an M.S. in Mathematics from Northeastern University.
Complex systems, agent-based modeling, social simulation, computational models, network models, network theory, methodology, philosophy of science, ontology, epistemology, ethics, artificial intelligence, big data analysis, geospatial data analysis,
I am currently Associate Professor of Organizational Cognition and Director of the Research Centre for Computational & Organisational Cognition at the Department of Language and Communication, University of Southern Denmark, Slagelse. My current research efforts are on socially-based decision making, agent-based modeling, cognitive processes in organizations and corporate social responsibility. He is author of more than 50 articles and book chapters, the monograph Extendable Rationality (2011), and he recently edited Agent-Based Simulation of Organizational Behavior with M. Neumann (2016).
My simulation research focuses on the applications of ABM to organizational behavior studies. I study socially-distributed decision making—i.e., the process of exploiting external resources in a social environment—and I work to develop its theoretical underpinnings in order to to test it. A second stream of research is on how group dynamics affect individual perceptions of social responsibility and on the definition and measurement of individual social responsibility (I-SR).
Agent Based Models used in policy analysis
Smarzhevskiy Ivan, born 1961, graduated from the Faculty of Mechanics and Mathematics of Moscow State University in 1983. Ph.D. in Economic Sciences since 2000.
Research interests: individual and collective behavior in the organization, decision making, sociology of small groups.
decision making, sociology of small groups, agent based models
Volker Grimm currently works at the Department of Ecological Modelling, Helmholtz-Zentrum für Umweltforschung. Volker does research in ecology and biodiversity research.
How to model it: Ecological models, in particular simulation models, often seem to be formulated ad hoc and only poorly analysed. I am therefore interested in strategies and methods for making ecological modelling more coherent and efficient. The ultimate aim is to develop preditive models that provide mechanstic understanding of ecological systems and that are transparent and structurally realistic enough to support environmental decision making.
Pattern-oriented modelling: This is a general strategy of using multiple patterns observed in real systems as multiple criteria for chosing model structure, selecting among alternative submodels, and inversely determining entire sets of unknown model parameters.
Individual-based and agent-based modelling: For many, if not most, ecological questions individual-level aspects can be decisive for explaining system-level behavior. IBM/ABMs allow to represent individual heterogeneity, local interactions, and/or adaptive behaviour
Ecological theory and concepts: I am particularly interested in exploring stability properties like resilience and persistence.
Modelling for ecological applications: Pattern-oriented modelling allows to develop structurally realistic models, which can be used to support decision making and the management of biodiversity and natural resources. Currently, I am involved in the EU project CREAM, where a suite of population models is developed for pesticide risk assessment.
Standards for model communication and formulation: In 2006, we published a general protocol for describing individual- and agent-based models, called the ODD protocol (Overview, Design concepts, details). ODD turned out to be more useful (and needed) than we expected.
Applying agent-based models to archaeological data, using modern ethnoarchaeological data as an analog for behavior.
GIS Developer
Agent Based Modeing in geosimulation
My research focuses on the productivity of harvesting systems in Maine. This research generally includes on the ground observation and the conducting of time and motion studies. I recently started using agent based modelling as a tool to simulate the interaction of various machines and the change in productivity based on specific input variables.
Modeling land use change from smallholder agricultural intensification
Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.
Displaying 10 of 238 results agent based clear search