Displaying 10 of 85 results for "Alison Heppenstall" clear search
I am a scientist at the Johns Hopkins Applied Physics Laboratory. Previously, I worked for the Board of Governors of the Federal Reserve System as an internal consultant on statistical computing. I have also been a consultant to numerous government agencies, including the Securities and Exchange Commission, the Executive Office of the President, and the United States Department of Homeland Security. I am a passionate educator, teaching mathematics and statistics at the University of Maryland University College since 2010 and have taught public management at Central Michigan University, Penn State, and the University of Baltimore.
I am fortunate to play in everyone else’s backyard. My most recent published scholarship has modeled the population of Earth-orbiting satellites, analyzed the risks of flood insurance, predicted disruptive events, and sought to understand small business cybersecurity. I have written two books on my work and am currently co-editing two more.
In my spare time, I serve Howard County, Maryland, as a member of the Board of Appeals and the Watershed Stewards Academy Advisory Committee of the University of Maryland Extension. Prior volunteer experience includes providing economic advice to the Columbia Association, establishing an alumni association for the College Park Scholars Program at the University of Maryland, and serving on numerous public and private volunteer advisory boards.
B.S. in Fish and Wildlife from Michigan State University in 1996. M.S. in Wildlife Ecology from the University of Maine - Orono in 2001. Employed by the Michigan Department of Natural Resources since 2003, first as a field biologist (2003-2008), then statewide endangered species coordinator (2008-2012), and currently as the statewide (climate) adaptation program lead (2012-present). Also currently a graduate student in the Boone and Crockett Quantitative Wildlife Center at Michigan State University (2015-present). Father, gardener, hiker, and amateur myxomycologist.
Human-wildlife social-ecological systems, resilience and learning in complex adaptive systems, climate change, disturbance ecology, and historical ecology
I am a computational archaeologist interested in how individuals and groups respond to both large scale processes such as climate change and local processes such as violence and wealth inequality. I am currently a PhD Candidate in the Department of Anthropology at Washington State University.
My dissertation research focuses on experimenting with paleoecological data (e.g., pollen) to assess whether or not different approaches are feasible for paleoclimatic field reconstructions. In addition, I will also use pollen data to generate vegetation (biome) reconstructions. By using tree-ring and pollen data, we can gain a better understanding of the paleoclimate and the spatial distribution of vegetation communities and how those changed over time. These data can be used to better understand changes in demography and how people responded to environmental change.
In Summer 2019, I attended the Santa Fe Institute’s Complex Systems Summer School, where I got to work in a highly collaborative and interdisciplinary international scientific community. For one of my projects, I got to merry my love of Sci-fi with complexity and agent-based modeling. Sci-fi agent-based modeling is an anthology and we wanted to build a community of collaborators for exploring sci-fi worlds. We also have an Instagram page (@Scifiabm).
Amineh Ghorbani is an assistant professor at the Engineering Systems and Services Department, Delft University of Technology, the Netherlands. She is also an affiliated member of the “Institutions for Collective Action” at Utrecht University. She obtained her M.Sc. in Computer Science (Artificial intelligence) from University of Tehran (Iran) (2009, honours) and her PhD from Delft University of Technology (2013, cum laude).
During her PhD, Amineh developed a meta-model for agent-based modelling, called MAIA, which describes various concepts and relations in a socio-technical system. This modelling perspective helped her develop a modelling paradigm that she refers to as institutional modelling.
Her current area of research is understanding the emergence and dynamics of institutions (set of rule organizing human society) using modelling. She is interested in how bottom-up collective action emerges and how institutions emergence and change within communities.
collective action
institutional emergence
evolution of institutions
community energy systems
Sedar is a PhD student at the University of Leeds, department of Geography. He graduated in Computer Science at King’s College London 2018. From a very early stage of his degree, he focused on artificial intelligence planning implementations on drones in a search and rescue domain, and this was his first formal attempt to study artificial intelligence. He participated in summer school at Boğaziçi University in Istanbul working on programming techniques to reduce execution time. During his final year, he concentrated on how argumentation theory with natural language processing can be used to optimise political influence. In the midst of completing his degree, he applied to Professor Alison Heppenstall’s research proposal focusing on data analytics and society, a joint endeavour with the Alan Turing Institute and the Economic and Social Research Council. From 2018 - 2023 he will be working on his PhD at the Alan Turing Institute and Leeds Institute for Data Analytics.
Sedar will be focusing on data analytics and smart cities, developing a programming library to try simulate how policies can impact a small world of autonomous intelligent agents to try deduce positive or negative impact in the long run. If the impact is positive and this is conveyed collectively taking into consideration the agent’s health, happiness and other social characteristics then the policy can be considered. Furthermore, he will work on agent based modelling to solve and provide faster solutions to economic and social elements of society, establishing applied and theoretical answers. Some other interests are:
After completing my undergraduate education at Bilkent University (Turkey), I continued my studies at the University of Cambridge, receiving first my MPhil and then my PhD in Assyriology/Ancient Near Eastern Archaeology, funded by a Chevening Open Society Scholarship and the Board of Higher Education of Turkey. After teaching for several years at Çanakkale Onsekiz Mart University, I moved to eastern Turkey to start the Archaeology Department of Bitlis Eren University, and I was the Head of Department until the end of 2018. I have been a visiting researcher at the American Center of Oriental Research in Amman in 2011 (Mellink Fellowship), at the Oriental Institute of the University of Chicago in 2014 (Fulbright Fellowship), and at the Department of Archaeology and Ancient History of Uppsala University in 2019 (Swedish Institute Fellowship). I have also held a Newton Advanced Fellowship here at Leicester in the UK. I have previously co-directed several fieldwork projects: the Cambridge University Kilise Tepe Excavations (southern Turkey, 2009-13), the Cide Archaeological Project (survey, Black Sea coast, 2010-1), the Sirwan Regional Project (survey, northern Iraq, 2012-5), and the Lower Göksu Archaeological Salvage Survey Project (survey, southern Turkey, 2013-7). I am currently co-directing the Çadır Höyük excavations, which is a joint American, British, Canadian and Turkish archaeological excavation project conducted in north-central Turkey, and the Taşeli-Karaman Archeological Project, which was initiated in 2018 as a continuation of the Lower Göksu Archaeological Salvage Survey Project, to study the Göksu River Basin in its wider geographical context in the hope of better understanding its role as a network hub connecting the eastern Mediterranean world to the central Anatolian Plateau.
Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.
Angelos Chliaoutakis received his PhD in Electronic & Computer Engineering in 2020 at Technical University of Crete (TUC), Greece. During 2005-2020 he was a research assistant at the Intelligent Systems Laboratory of TUC, participating in several research projects associated with NLP, semantic similarity and ontology based information systems. Since 2010 he is also a research assistant at the Laboratory of Geophysical - Satellite Remote Sensing and Archaeo-environment (GeoSat ReSeArch Lab) of the Institute for Mediterranean Studies of Foundation for Research and Technology (IMS-FORTH), were he is involved in various research projects related to the full-stack development of Geographical Information Systems (GIS), web-based GIS applications and Geoinformatics in the cultural and archaeological domain. This ultimately transformed his interest and research direction towards computational archaeology, in particular, agent-based modeling and simulation, while intertwining ideas and approaches from Artificial Intelligence, Multi-agent Systems and GIS.
Research activities range between Computer Science, Information Systems and Natural Language Processing (NLP), Agent-based modeling/simulation (ABM), Artificial Intelligence (AI) and Multi-Agent Systems (MAS) and Geographical Information Science (GIScience).
Dr. Roger Cremades is a complex systems scientist and heterodox global change economist integrating human-Earth interactions across systems and scales into modular quantitative tools, e.g. connecting drought risks in cities with land use at the river basin scale. He is elected Council member of the Complex Systems Society (2022-2025) and previously served as co-Chair of the Development Team of the Finance and Economics Knowledge-Action Network of Future Earth, the largest global research programme in global change (2020-2022). Roger coordinated research and co-production projects above €1M, and published in top journal like PNAS, Nature Climate Change, and Nature Geoscience. As a scientific modeler in the Social and Ecological Sciences, Roger integrates complex systems concepts into integrated assessment models of global change, with a focus on cities.
The future of CoMSES.Net, in Roger’s vision, is to augment its projection into a hub for discussing state-of-the-art approaches on modeling for the Social and Ecological Sciences, e.g. via bi-annual webinars, so that the Model Library becomes a lighthouse from where all communities developing, sharing, using, and reusing agent-based and other computational models also find valuable discussions to advance their research, education, and computational practice.
Global change, human-Earth interactions, complex systems.
Displaying 10 of 85 results for "Alison Heppenstall" clear search