Displaying 10 of 238 results agent based clear search
Andrew Bell (Ph.D. 2010, Michigan) was a Research Fellow in the Environment and Production Technology Division at the International Food Policy Research Institute (IFPRI) in Washington, DC. His current research portfolio focuses on the use of field instruments – such as discrete choice experiments, framed field experiments, randomized control trials – to inform behavior in agent-based models of coupled human-natural systems. Prior to this post, Andrew was a post-doctoral research fellow at The Earth Institute at Columbia University, where he focused on developing applications for paleo-climate histories.
Tenured researcher @ government think-tank (IPEA) and CNPq (productivity grant - since 2014), complex modeler interested, data fan, transitional Python user, PhD. Background in urban analysis, economics, geography. From twitter.com/furtadobb
Agent-based modeling, urban policy, urban economics. Metropolis and municipalities analyses.
Christophe Le Page currently works at the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD). Christophe does research on participatory modelling of the interactions between agriculture and the environment, focusing more specifically on the relationships among stakeholders about the management of natural renewable resources. Christophe is designing and using interactive agent-based simulation and role-playing games. He is an active member of the Companion Modelling research group.
Agent-based simulations and role-playing games in the field of renewable resource management.
My main research field is health economic modeling with the main focus on sexually transmitted diseases. We are trying to build a agent-based model using the FLAME-framework (www.flame.ac.uk).
My dissertation research at the Johnson-Shoyama Graduate School of Public Policy focuses on food safety and consumer choices, using agent-based models as a novel method for investigating this policy space.
agent-based modelling
Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.
Social scientist based in Milan, Italy. Post-doctoral researcher in Sociology at the Department of Social and Political Sciences of the University of Milan (Italy), member of the Behave Lab. Adjunct professor of Social Network Analysis at the Graduate School in Social and Political Sciences of the University of Milan.
I am an environmental archaeologist, specializing in charcoal analysis, computational and analytical proxy modeling, and quantitative methods to understand the dynamic relationship between fire, humans, and long-term environmental change. I work primarily in the Western United States and the Western Mediterranean. I am passionate about our public lands and ensuring that everyone has access and opportunity to experience them.
Envrionmental Archaeology, Fire Ecology, GIS, Agent-based modeling, Geoarchaeology
I study small- and large-scale sustainable resource management using a variety of techniques including mathematical modeling, agent-based simulation, and Statistical Inference
Displaying 10 of 238 results agent based clear search