Displaying 10 of 168 results for "Michael D. Slater" clear search
Agent-based modeling in political science
My interests lie in the intersection of economics, networks, and computation. I am currently studying labour dynamics as a process where people flow throughout the economy by moving from one firm to another. I study these flows by looking at detailed data about employment histories of each individual and every firm in entire economies. Using this information, I construct networks of firms in order to map the roads that people take throughout their careers. This allows to study labour markets at an unprecedented fine-grained level of detail. I employ agent-based computing methods to understand how economic shocks and policies alter labour flows, which eventually translate into unemployment and other related problems.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
I am fascinated by unraveling water-scarcity patterns. I am an expert in Integrated Assessment Modelling and Water Footprint Assessment. The concepts and tools that I have developed and applied all aim at availing knowledge at scales relevant to decision-makers in the water sector. During my PhD at the University of Twente I evaluated how spatiotemporal patterns of water availability relate to patterns of water use for a river basin in the semi-arid Northeast of Brazil. I have used agent-based modelling and developed the downstreamness concept to analyze the emergence of basin closure. This concept is helpful to water managers for identifying priority locations for intervention inside a river basin system. As a postdoc I continued to evaluate the relation between water use and availability and further broadened my scope to a wider range of related topics.
Northwest Coast Archaeology
Complex Hunter-Gatherers
Social Learning
Lithic Technologies
Sedentism
I study human dimensions of natural resource management and resource use by under-represented populations—often in developing nations—to enhance our understanding of conflicts involving land use, natural resources, and conservation from an interdisciplinary, systematic lens. My research spans subjects such as common pool resource management and policy, decentralization, and land use/land cover change drivers and trends relating to population rise and environmental change.
I am interested in questions of method, and in the application of computational social models to a wide variety of national security questions (such as counterterrorism and counterinsurgency) as well as decision-making around complex natural resources such as water. My methods interest center on the use of qualitative social theory to inform the structure of computational social models, and the ways in which such models handle qualitative data. This raises questions around the nature of data and the ways in which computational social models convey information to decision-makers.
My research interests include policy informatics and decision making, modeling in policy analysis and management decisions, public health management and policy, and the role of public value in policy development. I am particularly interested in less mainstream approaches to modeling that account for learning, feedback, and other systems dynamics. I include Bayesian inference, agent-based models, and behavioral assumptions in both my research and teaching.
In my dissertation research, I conceptualize state Medicaid programs as complex adaptive systems characterized by diverse actors, behaviors, relationships, and objectives. These systems reproduce themselves through both strategic and emergent mechanisms of program management. I focus on the mechanism by which citizens are sorted into or out of the system: program enrollment. Using Bayesian regression and agent-based models, I explore the role of administrative practices (such as presumptive eligibility and longer continuous eligibility periods) in increasing enrollment of eligible citizens into Medicaid programs.
Modeling coupled natural/human systems, climate impacts and mitigation policy.
Displaying 10 of 168 results for "Michael D. Slater" clear search