Displaying 9 of 39 results for "Ariane Burke" clear search
In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’
To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.
I am an agent-based simulation modeler and social scientist living near Cambridge, UK.
In recent years, I have developed supply chain models for Durham University (Department of Anthropology), epidemiological models for the Covid-19 pandemic, and agent-based land-use models with Geography PhD students at Cambridge University.
Previously, I spent three years at Ludwig-Maximillians University, Munich, working on Human-Environment Relations and Sustainability, and over two and a half years at Surrey University, working on Innovation with Nigel Gilbert in the Centre for Research in Social Simulation (CRESS). The project at Surrey resulted in a book in 2014, “Simulating Innovation: Computer-based Tools for Rethinking Innovation”. My PhD topic, modeling human agents who energise or de-energise each other in social interactions, drew upon the work of sociologist Randall Collins. My multi-disciplinary background includes degrees in Operational Research (MSc) and Philosophy (BA/MA).
I got hooked on agent-based modeling and complexity science some time around 2000, via the work of Brian Arthur, Stuart Kauffman, Robert Axelrod and Duncan Watts (no relation!).
As an agent-based modeler, I specialize in NetLogo. For data analysis, I use Excel/VBA, and R, and occasionally Python 3, and Octave / MatLab.
My recent interests include:
* conflict and the emergence of dominant groups (in collaboration with S. M. Amadae, University of Helsinki);
* simulating innovation / novelty, context-dependency, and the Frame Problem.
When not working on simulations, I’m probably talking Philosophy with one of the research seminars based in Cambridge. I have a particular interests when these meet my agent-based modeling interests, including:
* Social Epistemology / Collective Intelligence;
* Phenomenology / Frame Problem / Context / Post-Heideggerian A.I.;
* History of Cybernetics & Society.
If you’re based near Cambridge and have an idea for a modeling project, then, for the cost of a coffee / beer, I’m always willing to offer advice.
Using agent based models to look at ecosystem-based or integrated management of oceans and coastal zones
My interests is always on the dynamic interactions of human and their habitat (nature/built environment, etc.). At the moment my researches focus on the political-ecology analysis of human-nature interactions and social-ecological systems analysis. I am interested in using Agent-Based Model to support my works. I have been using ABM for quite some years, although not putting too much focus on it at the moment.
Aquatic ecology, Socio-ecological fisheries systems
Modelling of socio-ecological systems and management of common property resources in artisanal fisheries. Population dynamics of coastal marine invertebrates exploited by artisanal fisheries.
Community assembly after intervention by coral transplantation
The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.
Displaying 9 of 39 results for "Ariane Burke" clear search