Displaying 7 of 327 results for "Am Vaes - Van De Hulsbeek" clear search
I am a Ph.D. student studying the interactions between external regulations and social norms in natural resource management and international development. In particular, I am looking to use mixed methods research, including ethnographic research, field experiments, and agent-based computational models to explore the sustainability of market-based interventions and their possible perverse outcomes.
The aim of this project is to complement the approach developed by UMR-Geographie-Cité (“SimPop” Models), using an approach based on the organization and deployment of multinational corporation networks in urban system. We will simulate the interactions between networks of multinational corporation and the urban system.
Distributed computing modeling, multi-agent computing models, economic and financial models, healthcare chronic disease models
My research interests include statistical mechanics, chaos theory and complex systems. I am also interested in simulations of social and economical systems.
Community assembly after intervention by coral transplantation
The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.
Displaying 7 of 327 results for "Am Vaes - Van De Hulsbeek" clear search