Displaying 10 of 36 results spatial clear search
To tackle the scientific challenges proposed by landscape dynamics and cooperation processes, I have developed a research methodology based on field work and companion modelling (ComMod) combined with the formalisation of the observed processes and agents based models.
This approach offers the possibility to understand : spatial, social, cultural and / or economic conditions that take place on territories, and to provide prospective scenarios.
These methods have been applied in various contexts: steep slope vineyards landscapes (2011), water resource management cooperation (2015), vegetation cover in dry climate (2017). The established research networks are still active through sustained collaborations and activities.
My technical expertise grew and evolved through investment in several workgroups: MAPS Team (Modelling Applied to Space Phenomena), OSGeo (president of the OSGeo’s French chapter between 2013 and 2016, member of the OSGeo-international chapter since 2015), various initiatives around modelling, exploration and sensibility analysis of spatial patterns behaviours, and more generally in Free Software communities.
I am interested in the socio-environmental conditions for the emergence of cooperation and mutual aid in social systems and mainly with regard to renewable resources. I consider in this context that Commons are a spatial manifestation of mutual aid.
From a technical point of view, I am very interested in the questions of model exploration (HPC), which led me to integrate the OpenMole community and to contribute to discussions about heuristic exploration.
My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.
Positions held today:
• Associate Professor for Geoinformatics and Ecology at the University of Salzburg (since 2017)
• UNIGIS Program Director (since 2020)
• Head of the Research Group “Spatial Simulation” (since 2013)
Major academic milestones:
• Assistant Professor, Department for Geoinformatics, University of Salzburg (2013-2017)
• Associate Faculty in the FWF Doctoral College “GIScience” (2013-2017)
• Director of Studies UNIGIS MSc distance learning programs, University of Salzburg (2012-2020)
• PhD at the University of Innsbruck on ecological modelling (2011)
• Research Assistant Austrian Academy of Sciences, GIScience Institute (2007-2011)
• Magistra in Ecology, Univ. of Innsbruck (2001) and MSc in GIS, Univ. of Edinburgh (2006)
Spatially-explicit simulation modelling of complex, ecological systems:
* the added value of spatially-explicit modelling
* Hybrid agent-based and system-dynamics modelling in ecology
* Agent-based models, Cellular Automata
Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).
The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.
Andrew Crooks is an Associate Professor with a joint appointment between the Computational Social Science Program within the Department of Computational and Data Sciences and the Department of Geography and GeoInformation Science, which are part of the College of Science at George Mason University. His areas of expertise specifically relate to integrating agent-based modeling (ABM) and geographic information systems (GIS) to explore human behavior. Moreover, his research focuses on exploring and understanding the natural and socio-economic environments specifically urban areas using GIS, spatial analysis, social network analysis (SNA), Web 2.0 technologies and ABM methodologies.
GIS, Agent-based modeling, social network analysis
Research focuses on the coupled dynamics of human and natural systems, specifically in the context of forest dynamics. I utilize a variety of modeling and analysis techniques, including agent-based modeling, cellular automata, machine learning and various spatial statistics and GIS-related methods. I am currently involved in projects that investigate the anthropogenic and biological drivers behind native and invasive forest pathogens and insects.
Agent Based Modelling for spatial systems
The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.
To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.
land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling
My research aims to explore the potential of network science for the archaeological discipline. In my review work I confront the use of network-based methods in the archaeological discipline with their use in other disciplines, especially sociology and physics. In my archaeological work I aim to develop and apply network science techniques that show particular potential for archaeology. This is done through a number of archaeological case-studies: archaeological citation networks, visibility networks in Iron Age and Roman southern Spain, and tableware distribution in the Roman Eastern Mediterranean.
I am a FullStack Developer & GIS Specialist with a proven track record in developing GIS-driven software solutions, urban planning tools, and spatial analysis platforms. With expertise in technologies, I combine technical skills with leadership to deliver impactful projects that bridge technology and geospatial innovation.
Agent Based Modeing in geosimulation
GeoSimulation
GeoWeb
GeoAI
Displaying 10 of 36 results spatial clear search