Displaying 8 of 28 results multi-agent clear search
Agent Based Modeling (ABM), Agent Based Social System (ABSS), Multi-Agent Systems (MAS), Bayesian learning, Social networks Analysis (SNA), Socio ecological Dynamics.
I work as a Senior Researcher at the Centre for Modeling Social Systems (CMSS) at the Norwegian Research Centre (NORCE) sinde 2023. Before, I worked as an Expert Research Engineer at the CEA LIST Institute, Paris-Saclay University in France from 2013 to 2023. I hold a PhD in Artificial Intelligence degree from the Paul Sabatier University (France) and a PhD in Computer Engineering degree from the Ege University (Turkey).
I work in the field of complex adaptive systems, specializing in multi-agent systems, simulation, machine learning, collective intelligence, self-organization, and self-adaptation. I am interested in contributing to innovative projects and research in these domains.
My experience spans across multiple large-scale international research projects in areas such as green urban logistics, blockchain for nuclear applications, autonomous robotics systems and simulation of biological neural networks.
Modeling, companion modeling, role playing games, serious games, multi-agent systems, agent-oriented simulation, complex systems, water management, artificial intelligence
My main interests are system dynamics and multi agent simulation used for support of business and marketing decisions (e.g. modeling of consumer markets) and in business education (e.g. development of open source business simulators). Amongst my other interests are applied marketing research, relationships between academia and industry, financial literacy, mind and concept mapping.
My research focuses pn the intersection between game theory, social networks, and multi-agent simulations. The objectives of this scientific endeavor are to inform policy makers, generate new technological applications, and bring new insight into human and non-human social behavior. My research focus is on the transformation of cultural conventions, such as signaling and lexical forms, and on many cell models models of stem cell derived clonal colony.
Because the models I analyze are formally defined using game theory and network theory, I am able to approach them with different methods that range from stochastic process analysis to multi-agent simulations.
Modeling land use change from smallholder agricultural intensification
Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.
I have been researching in synchronization between agent-based-models (ABM) and multi robot systems used in logistic and manufacturing. I use Netlogo as ABM.
I develop and agile methodology to use the same ABM as supervisory control and data aquisition (SCADA). The framework works fine and I test it in two SCADAs, which you can see in my youtube channel (http://www.youtube.com/channel/UCJIb_UL-ak98F5OZxOHL0FQ).
Flexible agent communication
Argumentation in multi-agent systems
Knowledge representation and reasoning
Ontologies for agents
Mediation and Dispute Resolution
Displaying 8 of 28 results multi-agent clear search