Displaying 10 of 37 results behavior clear search
Department of Computational and Data Sciences
George Mason University
Fairfax, VA, USA
I use ABM to study organizations, leadership, employee behavior and performance, and the social/psychological theories addressing workplace behavior and outcomes.
I have also used ABM to explore mass violence, active shooters, and mass shootings, including the spread of mass violence and its antecedents.
Voting Behavior
I discovered at the same time Agent-Based Modeling method and Companion Modelling approach during my master degrees (engeenering and artificial intelligence and decision) internship at CIRAD in 2005 and 2006 where I had the opportunity to participate as a modeller to a ComMod process (Farolfi et al., 2010).
Then, during my PhD in computer Science applied to Modeling and Simulation, I learned the Theory of Modeling and Simulation and the Discrete EVent System specification formalism and proposed a conceptual, formal and operational framework to evaluate simulation models based on the way models are used instead of their ability to reproduce the target system behavior (Bonté et al., 2012). Applied to the surveillance of Epidemics, this work was rather theoritical but very educative and structuring to formulate my further models and research questions about modeling and simulation.
From 2011 to 2013, I worked on viability theory applied to forest management at the Compex System Lab of Irstea (now Inrae) and learned about the interest of agregated models for analytical results (Bonté et al, 2012; Mathias et al, 2015).
Since 2013, I’m working for Inrae at the joint The Joint Research Unit “Water Management, Actors, Territories” (UMR G-EAU) where I’m involved in highly engaging interdisciplinary researches such as:
- The Multi-plateforme International Summer School about Agent Based Modelling and Simulation (MISSABMS)
- The development of the CORMAS (COmmon Pool Resources Multi-Agents Systems) agent-based modeling and simulation Platform (Bommel et al., 2019)
- Impacts of the adaptation to global changes using computerised serious games (Bonté et al., 2019; Bonté et al. , 2021)
- The use of experimentation to study social behaviors (Bonté et al. 2019b)
- The impact of information systems in SES trajectories (Paget et al., 2019a)
- Adaptation and transformations of traditional water management and infrastructures systems (Idda et al., 2017)
- Situational multi-agent approaches for collective irrigation (Richard et al., 2019)
- Combining psyhcological and economical experiments to study relations bewteen common pool resources situations, economical behaviours and psychological attitudes.
My research is about modelling and simulation of complex systems. My work is to use, and participate to the development of, integrative tools at the formal level (based on the Discrete EVent System Specification (DEVS) formalism), at the conceptual level (based on integrative paradigms of different forms such as Multi-Agents Systems paradigm (MAS), SES framework or viability theory), and at the level of the use of modelling and simulation for collective decision making (based on the Companion Modelling approach (ComMod)). Since 2013 and my integration in the G-EAU mixt research units, my object of studies were focused on multi-scale social and ecological systems, applied to water resource management and adaptation of territories to global change and I added experimentation to my research interest, developping methods combining agent-based model and human subjects actions.
Jorge is a PhD candidate of System Design Engineering at the University of Waterloo. His research activities are focused on applying agent-based models on three major areas: 1) financial markets to study the self-regulation capability of artificial markets with interacting investors and credit rating agencies; 2) the efficiency of road networks when users have access to real-time information and are able to adjust their behavior to current conditions; 3) failure probability of nuclear waste containers due to microbial- and chemical-driven corrosion.
Interested in numerical models and new conceptual ideas, applications from industry to medicine.
I focus on numerical modeling of mechanics of solid materials and cell mechanics. The models that I developed so far address granular matters, bio-fluids, cellular tissues, and individual cells.
I further develop Agent-based Models, which are methods to predict collective behavior from individual dynamics controlled by rules or differential equations. Examples: tumor growth, swarms, crowd movement.
The methods I used are Particle-based methods which offer great flexibility within physical modeling, and can operate in a large range of scales, from atomistic scales (e.g. Molecular Dynamics) to continuum approaches (e.g. Smoothed Particle Hydrodynamics).
Cristina Montañola Sales is an assistant professor at Institut Químic de Sarrià in Ramon Llull University, where she teaches subjects in ICT and statistics. She holds a PhD in Statistics and Operations Research and specializes in the investigation of novel quantitative methods for studying human behavior, such as agent-based models and spatio-temporal analysis. Her interdisciplinary research combines mathematics with social sciences, biomedicine and High-Performance Computing. She has studied various contexts, such as the dynamics of mobility of Gambian emigrants, demographic forecasting in South Korea, and ecological resilience of hunter-gatherers in India. Her research on tuberculosis transmissions and COVID-19 has advanced knowledge in epidemics, demographic dynamics and computational statistics. She has published articles and participated in international projects on simulation, parallel computing and global health.
validation, computer performace, epidemics, demography
Simulation of emergent behavior systems and metrics associated with the detection and characterization of emergent phenomena.
I am a Professor in the School of Sustainability and the Director of the Center for Behavior, Institutions and the Environment. I want to understand how people solve collective problems at different levels of scale, especially those problems related to sustainability of our environment. Our society experience unprecedented challenged to sustain common resource for future generations at a scale we have never experienced before. What makes groups cooperate? What is the role of information? How does the ecological context affect the social fabric? How do they deal with a changing environment? How can we use these insight to address global challenges? To do this research I combine behavioral experiments, agent-based modeling and case study analysis.
I am Cheick Amed Diloma Gabriel Traoré, holding a PhD in Multi-Agent System Modeling from Cheikh Anta Diop University (UCAD), Senegal. My doctoral research focused on formalizing and simulating Sahelian transhumance as a complex adaptive system. Leveraging mathematical and computational techniques, I developed agent-based models to analyze the spatio-temporal dynamics of transhumant herds, considering factors such as herd behavior, environmental conditions, and socio-economic pressures.
My background includes a Master’s and Bachelor’s in Mathematics from the University of Nazi Boni, Burkina Faso, where I developed a rectangular mesh for image processing and applied the Hough transform to detect discrete lines. My studies at the University of Nazi Boni were funded by the Burkinabe government.
For my PhD, I conducted extensive fieldwork in Senegal, collaborating with interdisciplinary teams to gather data on transhumant practices. Using this data, I developed a multi-objective optimization framework to model herd movement decisions. Furthermore, I created a real-time monitoring system for transhumant herds based on discrete mathematics. My PhD research was funded by the CaSSECS project (Carbon Sequestration and Sustainable Ecosystem Services in the Sahel).
Displaying 10 of 37 results behavior clear search