Displaying 10 of 385 results for "J Van Der Beek" clear search
He is a member of IEEE, a computer scientist, an Information Technologist, and a Research Lab Head at the Dig Connectivity Research Laboratory (DCRLab), Kampala, Uganda. My research broadly integrates and focuses on developing principled computationally and statistically efficient models and algorithms for various machine learning problems in Smart Agriculture, Ecological Informatics, Computer Vision, Applied AI, Cybersecurity and Privacy, and Smart Cities. I attained a Bachelor in Information Technology at the Faculty of Science & Computing, Ndejje University, Kampala, Uganda; a Master in Information Technology Engineering (Computer and Communication Networks); and PhD in Computer Science Universiti Brunei Darussalam, Brunei. He has received additional training from, among others, the National Institutes of Health, US Department of Health and Human Services, and the Bloomberg School of Public Health, USA. Hundreds of scholarly publications, including those in prestigious peer-reviewed journal articles, numerous IEEE International, non-IEEE Conference proceedings, book chapters, and books have been published. Reviewer/editorial support of over twelve (Scopus, Compendex (Elsevier Engineering Index), and WoS International Journals, including Expert Systems With Applications, Scientific Reports and Computers and Electronics in Agriculture. I served in several capacities, including being departmental support for Mathematics for Data Science, Advanced Topics in Computing, and Advanced Algorithms. Prior to this, I served as a community data officer at Pace-Uganda, a research associate at TechnoServe, a research assistant at PSI-Uganda, a research lead at the Socio-economic Data Centre (SEDC-Uganda) and ag. managing director at Asmaah Charity Organisation.
Computer Vision, Artificial Intelligence, Security and Privacy, Smart Agriculture / Digital Agriculture, Health Computing, Digital Image Processing,
Social Networks Analysis, Sustainable Computing, Ecological Informatics, Smart Computing
Postdoctoral researcher at Institute of Economics, Polish Academy of Sciences and in Macroprudential Research Division at National Bank of Poland. She graduated in Mathematics (Jagiellonian University, Poland) and in Economics (University of Alcala, Spain). In 2017 she obtained Fulbright Advanced Research Award. In the United States, she carried out research on systemic risk and complex systems. Her doctoral dissertation was about the measurement and modeling of systemic risk using simulation methods and complex systems approach (the results to be published by Palgrave Macmillan US). Previously, she gained experience on agent-based modeling while working with Juan Luis Santos on the European Commission FP 7 MOSIPS project (http://www.mosips.eu/).
Mathematics, complex systems, financial modeling, agent-based modeling, econometrics, macroprudential policies, systemic risk, cental banking
I live in Salento, a small land located between two seas in Southeastern Italy. I work as an educator in an adult school. My educational background includes a degree in Life Sciences. During my post-graduate training, I was involved in researching the genetic and molecular responses of cells to environmental and genomic stresses. Currently, I am interested in exploring theoretical biology and complex adaptive systems through agent-based modelling.
Artificial Life, Adaptive Cognition, Evolvability
My main research interests are agent-based modeling, simulation of social complexity, computational social choice, distributed systems and applied artificial intelligence.
I am a marine environmental scientist by training (U Oldenburg, 2001) with a PhD in atmospheric physics (U Wuppertal, 2005) and a strong modeling focus throughout my career.
I have built models (C, C++) for understanding the regional transitions from hunting-gathering subsistence to agropastoral life styles throughout the world. The fundamental principle of these models is to consider aggregate traits of populations, such as the preference for a subsistence style. I applied these models to the European “Wave of Advance”, to the disintegration of the urban Indus civilisation and to the differential emergence of agropastoralism in the Americas versus Europe, but also globally. An interesting outcome of these models are global and reginoally resolved prehistoric CO2 emissions caused by the land use transitions.
I have built and applied models for understanding the ecological relations and biogeochemical flows through the North Sea ecosystem. Also for this research I apply trait-based models, looking at traits such as vertical positioning or energy allocation. As an outcome, I have, e.g., estimated the biomass of blue mussels in the North Sea and quantified the effect of Offshore Wind Farm biofouling on the sea’s produtivity.
I led the development of the Earth System coupler MOSSCO, leveraging ESMF technologies. I like to rip legacy models apart and reconstruct them with interoperability and reusability by design. I contribute to building the next-generation modular hurricane forecasting system.
As a member of the Open Modeling Foundation (OMF), I am an evangelist of good scientific software practices, and educate and publish about improving underlying assumptions, stating clear purposes, keeping models simple and aquiring tools to further good practices.
1987-1989: assistant professor at the Neuchâtel University (Switzerland)
1990-2001: full professor at the Neuchâtel University (Switzerland): artificial intelligence & software engineering
2001- : senior researcher at CIRAD in the unit “Gestion des Ressources et Environnement” (GREEN) and from 2021 “Savoirs ENvironnement Sociétés” (UMR SENS)
Former professor at the University of Neuchatel in Switzerland and now senior researcher at CIRAD in France, I am doing research on artificial intelligence since 1984. Having begun with logic programming, I naturally applied logics and its extensions (i.e. modal logics of various sorts) to specify agent behaviour. Since 1987, I moved both to embedded intelligence (using mobile robots) and multi-agent systems applied, in particular, to job-shop scheduling and complex system simulation and design. Since 2001, I exclusively work on modelling and simulation of socio-ecosystems in a multidisciplinary team on renewable resources management (GREEN). I am focusing on modelling complex systems in a multi-disciplinary (economist, agronomist, sociologists, geographers, etc.) and multi-actor (stakeholders, decision makers) setting. It includes:
- representing multiple points of view at various scales and levels on a complex socio-ecosystem, using ontologies and contexts
- representing the dynamics of such systems in a variety of formalisms (differential equations, automata, rule-based systems, cognitive models, etc.)
- mapping these representations into a simulation formalism (an extension of DEVS) for running experiments and prospective analysis.
This research is instantiated within a modelling and simulation platform called MIMOSA (http://mimosa.sourceforge.net). The current applications are the assessment of the sustainability of management transfer to local communities of the renewable ressources and the dynamics of agro-biodidversity through networked exchanges.
Modeling land use change from smallholder agricultural intensification
Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.
I study he role of biologically-based motivations in the formation of socio-political phenomena using agent-based modelling techniques. In particular I look at how behaviour inhibition and activation, as well as interpersonal attitudes can shape the emergence of complex polities.
Direction of the Vector-Borne Disease Network (www.vecnet.org), an international research consortium developing modeling tools that support the development of new strategies to eliminate malaria.
My academic interests involve public choice and the development of social norms for cooperation in the marketplace and the behavior of voting blocks. Recent work looks at the emergence of property rights “norms” among zero intelligence agents in an evolutionary context, and the dynamics of legislative party creation in an environment of stochastically voting voters.
Displaying 10 of 385 results for "J Van Der Beek" clear search