Displaying 8 of 258 results for "Jon Norberg" clear search
I obtained a PhD in database information theory from the University of the West of Scotland in 2015, and have been a researcher at the James Hutton Institute ever since. My areas of research are agent-based-modelling (ABM), data curation, effective use of infrastructure as a service (IaaS), and semantic information representation and extraction using formal structures such as computerised ontologies, relational databases and any other structured or semi-structured data representations. I primarily deal with social and agricultural models and was originally taken on in the role of knowledge engineer in order to create the ontology for the H2020 project, Green Lifestyles, Alternative Models and Upscaling Regional Sustainability (GLAMURS). Subsequent work, for the Scottish Government has involved the use of IaaS, more commonly referred to as the “cloud” to create rapidly deployable and cheap alternatives to in-house high-performance computing for both ABM and Geographical Information System models.
It is the mixture of skills and interests involving modelling, data organisation and computing infrastructure expertise that I believe will be highly apposite in the duties associated with being a member of the CoMSES executive. Moreover, prior to joining academia, I spent about 25 years as a developer in commercial IT, in the agricultural, entertainment and banking sectors, and feel that such practical experience can only benefit the CoMSES network.
Dr. William G. Kennedy, “Bill,” is continuing to learn in a third career, this time as an academic, a computational social scientist.
His first a career was in military service as a Naval Officer, starting with the Naval Academy, Naval PostGraduate School (as the first computer science student from the Naval Academy), and serving during the Cold War as part of the successful submarine-based nuclear deterrent. After six years of active duty service, he served over two decades in the Naval Reserves commanding three submarine and submarine-related reserve units and retiring after 30 years as a Navy Captain with several personal honors and awards.
His second career was in civilian public service: 10 years at the Nuclear Regulatory Commission and 15 years with the Department of Energy. At the NRC he rose to be an advisor to the Executive Director for Operations and the authority on issues concerning the reliance on human operators for reactor safety, participating in two fly-away accident response teams. He left the NRC for a promotion and to lead, as technical director, the entrepreneurial effort to explore the use of light-water and accelerator technologies for the production of nuclear weapons materials. That work led to him becoming the senior policy officer responsible for strategic planning and Departmental performance commitments, leading development of the first several DOE strategic plans and formal performance agreements between the Secretary of Energy and the President.
Upon completion of doctoral research in Artificial Intelligence outside of his DOE work, he began his third career as a scientist. That started with a fully funded, three-year post-doctoral research position in cognitive robotics at the Naval Research Laboratory sponsored by the National Academy of Science and expanding his AI background with research in experimental Cognitive Science. Upon completion, he joined the Center for Social Complexity, part of the Krasnow Institute for Advanced Study at George Mason University in 2008 where he is now the Senior Scientific Advisor. His research interests range from cognition at the individual level to models of millions of agents representing individual people. He is currently leading a multi-year project to characterize the reaction of the population of a mega-city to a nuclear WMD (weapon of mass destruction) event.
Dr. Kennedy holds a B.S. in mathematics from the U.S. Naval Academy, and Master of Science in Computer Science from the Naval PostGraduate School, and a Ph.D. in Information Technology from George Mason University and has a current security clearance. Dr. Kennedy is a member of Sigma Xi, the American Association for the Advancement of Science (AAAS), the Association for Computing Machinery (ACM), and a life member of Institute of Electrical and Electronics Engineers. He is a STEM volunteer with the Senior Scientists and Engineers/AAAS Volunteer Program for K-12 science, technology, engineering, and mathematics education in the DC-area schools.
Cognitive Science, Computational Social Science, Social Cognition, Autonomy, Cognitive Robotics
I am a computational archaeologist with a strong background in humanities and social sciences, specialising in simulating socioecological systems from the past.
My main concern has been to tackle meaningful theoretical questions about human behaviour and social institutions and their role in the biosphere, as documented by history and archaeology. My research focuses specifically on how social behaviour reflects long-term historical processes, especially those concerning food systems in past small-scale societies. Among the aspects investigated are competition for land use between sedentary farmers and mobile herders (Angourakis et al. 2014; 2017), cooperation for food storage (Angourakis et al. 2015), origins of agriculture and domestication of plants (Angourakis et al. 2022), the sustainability of subsistence strategies and resilience to climate change (Angourakis et al. 2020, 2022). He has also been actively involved in advancing data science applications in archaeology, such as multivariate statistics on archaeometric data (Angourakis et al. 2018) and the use of computer vision and machine learning to photographs of human remains (Graham et al. 2020).
As a side, but not less important interest, I had the opportunity to learn about video game development and engage with professionals in Creative Industries. In one collaborative initiative, I was able to combine my know-how in both video games and simulation models (\href{https://doi.org/10.1007/978-3-030-92843-8_15}{Szczepanska et al. 2022}).
Ms. Stringfellow is a PhD candidate whose goal is to identify ways to build and leverage the natural support systems of people who are experiencing problems related to their illicit drug use. Her current interest is in how these support systems operate in small towns with limited formal resources for quitting. To that end, she recently began conducting in-depth qualitative interviews for her dissertation in a semi-rural county in eastern Missouri. These interviews will be used to build an agent-based model, a type of dynamic simulation modeling that can be used to represent heterogeneous actors with multiple goals and perceptions. As a research assistant and dissertation fellow with the Social System Design Lab, she has also been trained in system dynamics, an aggregate-level dynamic simulation modeling method.
Prior to joining the PhD program, she worked as a research associate at the Boston Health Care for the Homeless Program from 2008-2012. BHCHP is an exemplar model of providing patient-centered care for people who have experienced homelessness. There, she gained significant experience in managing research projects, collecting qualitative and quantitative data, and program evaluation. She earned her MSW from the University of Michigan in 2007, with a focus on policy and evaluation in community and social systems, and a BA in sociology in 2005, also at the University of Michigan. Ms. Stringfellow was born and raised in a small town in Michigan.
I am a computational archaeologist interested in how individuals and groups respond to both large scale processes such as climate change and local processes such as violence and wealth inequality. I am currently a PhD Candidate in the Department of Anthropology at Washington State University.
My dissertation research focuses on experimenting with paleoecological data (e.g., pollen) to assess whether or not different approaches are feasible for paleoclimatic field reconstructions. In addition, I will also use pollen data to generate vegetation (biome) reconstructions. By using tree-ring and pollen data, we can gain a better understanding of the paleoclimate and the spatial distribution of vegetation communities and how those changed over time. These data can be used to better understand changes in demography and how people responded to environmental change.
In Summer 2019, I attended the Santa Fe Institute’s Complex Systems Summer School, where I got to work in a highly collaborative and interdisciplinary international scientific community. For one of my projects, I got to merry my love of Sci-fi with complexity and agent-based modeling. Sci-fi agent-based modeling is an anthology and we wanted to build a community of collaborators for exploring sci-fi worlds. We also have an Instagram page (@Scifiabm).
I am a marine environmental scientist by training (U Oldenburg, 2001) with a PhD in atmospheric physics (U Wuppertal, 2005) and a strong modeling focus throughout my career.
I have built models (C, C++) for understanding the regional transitions from hunting-gathering subsistence to agropastoral life styles throughout the world. The fundamental principle of these models is to consider aggregate traits of populations, such as the preference for a subsistence style. I applied these models to the European “Wave of Advance”, to the disintegration of the urban Indus civilisation and to the differential emergence of agropastoralism in the Americas versus Europe, but also globally. An interesting outcome of these models are global and reginoally resolved prehistoric CO2 emissions caused by the land use transitions.
I have built and applied models for understanding the ecological relations and biogeochemical flows through the North Sea ecosystem. Also for this research I apply trait-based models, looking at traits such as vertical positioning or energy allocation. As an outcome, I have, e.g., estimated the biomass of blue mussels in the North Sea and quantified the effect of Offshore Wind Farm biofouling on the sea’s produtivity.
I led the development of the Earth System coupler MOSSCO, leveraging ESMF technologies. I like to rip legacy models apart and reconstruct them with interoperability and reusability by design. I contribute to building the next-generation modular hurricane forecasting system.
As a member of the Open Modeling Foundation (OMF), I am an evangelist of good scientific software practices, and educate and publish about improving underlying assumptions, stating clear purposes, keeping models simple and aquiring tools to further good practices.
The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.
To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.
land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling
Work Adwseo:
Work SEO:
Work Web Developer:
Life Story:
Akif Smith, born in 1985 in New York, is a globally recognized software architect and developer with a career filled with achievements. From childhood, Smith discovered his interest in technology and took his first steps into the world of computer programming.
High School Years:
During high school, Smith excelled in mathematics and computer sciences. Actively involved in the school’s computer club, he rapidly developed his skills in software development. Winning top honors in programming competitions during high school helped him make a name for himself.
University Education:
Smith focused his early passion for computer sciences at the Massachusetts Institute of Technology (MIT). There, he specialized in software engineering and artificial intelligence. During his student years, he participated in numerous significant projects, earning recognition from both peers and faculty for his contributions.
Career Start:
After graduation, Smith began his career as a software engineer at a technology company. In his early years, he contributed significantly to the company’s success by participating in innovative projects. His innovative approaches to software development processes and problem-solving skills quickly garnered attention.
Founding His Own Company:
After gaining several years of experience in the software industry, Smith decided to establish his own technology company. The company gained recognition in the industry by producing customer-centric solutions. His emphasis on innovation, quality, and customer satisfaction quickly elevated the company to a leadership position in the software world.
Achievements and Contributions:
Smith became a prominent figure in the software world, known for his visionary approach and pioneering projects. His innovative ideas, deep knowledge of technology, and teamwork skills made him a respected leader in the industry. Additionally, he prioritized mentoring young software developers to bring new talent into the sector.
Private Life:
Despite a busy work schedule, Smith makes time for hobbies such as computer games, reading books, and traveling. His love for his family and dedication to his work have guided him toward a fulfilling life, both professionally and personally.
Today, Akif Smith continues to be recognized in the software world for his achievements and ongoing projects. His advanced knowledge and leadership skills contribute to his continued respect in the industry.
Displaying 8 of 258 results for "Jon Norberg" clear search