Displaying 10 of 238 results agent-based clear search
Ifigeneia Koutiva (female) is a senior environmental engineer, holding a PhD in Civil Engineering (NTUA), a Postgrad Diploma in Water Resources and Environmental Management (Un. of Belgrade - e-learning), an MSc in Environmental Technology (Imperial College London) and an MSc in Mining and Metallurgy Engineering (NTUA). Her PhD was funded by the Greek Ministry of Education through Heracleitous II scholarship. She is currently a postdoctoral scholar of the State Scholarship Foundation (IKY) for 2020 - 2021. She has 10 years of experience in various EU funded research projects, both as a researcher and as a project manager, in the fields of socio-technical simulation, urban water modelling, modelling and assessment of alternative water technologies, artificial intelligence, social quantitative research, KPI and water indicators development and assessment and analysis of large data sets. She is very competent with programming for creating ICT tools for agent based modelling and data analysis tools and she is an experienced user of spatial analysis software and tools. She is also actively involved in the design and implementation of numerous consultation workshops and conferences. She has authored more than 20 scientific journal articles, conferences articles and research reports.
My research interests lay within the interface of social, water and modelling sciences. I have created tools that explore the effects of water demand management policies in domestic urban water demand behaviour and the effects of civil decision making in flood risk management. I am interested in agent based modelling, artificial intelligence techniques, the creation of ABM tools for civil society, Circular Economy, distributed water technologies and overall urban water management.
fraud, occupational fraud, agent-based modeling, behavioural decision-making processes, social norms
Simulation and Optimization
Supply Chain Management
Data Analytics
Agent-Based Modeling
Archaeologist from Brazil, working with shellmound population dynamics in agent-based modelling.
Computational Social Science, Social Simulation, Innovative Methods, Agent-based Modelling, Serious game
Future Studies, AI Sociology, Societal Change, and some classical sociological topics (e.g. Social Mobility and Unequality, Education, Collective Action)
I am currently enrolled as a graduate student at UC3M, working towards a MS degree in Computational and Applied Mathematics. Upon completing my current program, my intention is to further my education in Applied Economics, with a specific focus on the intersection of Climate and Development Economics.
My research pursuits center around investigating the impacts of climate change on developing nations. Additionally, I am interested in studying the repercussions of fast fashion consumption, examining its effects on working conditions, the environment, and the overall well-being of individuals in the countries where these garments are manufactured. In my ongoing master’s thesis, I employ Agent-Based Modeling to simulate the attitudes of individual consumers towards fast fashion. The model captures behavioral shifts influenced by peers, social media, and governmental factors. This research aligns with my broader interests in comprehending public perspectives on global matters, underscoring the crucial influence of individual attitudes in confronting and finding solutions to these challenges.
Development Economics, Environmental Economics, Sustainability, Environment, Climate change, Climate justice, Energy, Clean Energy, Renewable Energy, Complex systems
Anna Sikora is an Associate Professor in the Computer Architecture and Operating System Department at Autonomous University of Barcelona (UAB).
She got the BS degree in computer science in 1999 from Technical University of Wroclaw (Poland). She got the MSc in computer science in 2001 and in 2004 the PhD in computer science, both from Autonomous University of Barcelona (Spain).
Since 1999 her investigation is related to parallel and distributed computing. Her current main interests are focused on high performance parallel applications, performance models, automatic performance analysis and dynamic tuning. She has been involved in programming tools for automatic and dynamic performance tuning on cluster and Grid environments, as well as in exa-scale systems.
High performance parallel computing, parallel applications, performance models, automatic performance analysis, dynamic tuning. Performance tools for automatic and dynamic performance tuning on HPC systems. Agent-based modelling systems.
I am an agent-based modeller at the James Hutton Institute in Scotland. I specialise in large-scale modelling of social and socio-ecological systems, with a particular focus on simulating stressors and process that could give rise to transformational change. To date, my research has focused on food and agricultural systems, rural economies, and the WASH sector, with much of it informed by firsthand fieldwork in Africa, Asia, and Europe. I am also interested in leveraging open science, participatory research, quantitative ethnography, and grounded theory within modelling processes to collaboratively generate nuanced insights into individual behaviour and societal dynamics. I received the Open Science Award from the International Land Use Study Centre in 2023 for such work. I currently co-lead the European Social Simulation Association’s Special Interest Group on Modelling Transformative Change and I am the Associate Director of the Centre for Empirical Agent-Based Modelling at the James Hutton Institute.
In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’
To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.
Displaying 10 of 238 results agent-based clear search