Displaying 10 of 371 results for "Am Vaes - Van De Hulsbeek" clear search
My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.
It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (http://www.behaviorsearch.org/)
My interests lie in the intersection of economics, networks, and computation. I am currently studying labour dynamics as a process where people flow throughout the economy by moving from one firm to another. I study these flows by looking at detailed data about employment histories of each individual and every firm in entire economies. Using this information, I construct networks of firms in order to map the roads that people take throughout their careers. This allows to study labour markets at an unprecedented fine-grained level of detail. I employ agent-based computing methods to understand how economic shocks and policies alter labour flows, which eventually translate into unemployment and other related problems.
My interests is always on the dynamic interactions of human and their habitat (nature/built environment, etc.). At the moment my researches focus on the political-ecology analysis of human-nature interactions and social-ecological systems analysis. I am interested in using Agent-Based Model to support my works. I have been using ABM for quite some years, although not putting too much focus on it at the moment.
I am a lowly civil servant moonlighting as a PhD student interested in urban informatics, Smart Cities, artificial intelligence/machine learning, all-things geospatial and temporal, advanced technologies, agent-based modeling, and social complexity… and enthusiastically trying to find a combination thereof to form a disseration. Oh… and I would like to win the lottery.
I am a developer for CoMSES Net as part of the Global Biosocial Complexity Initiative at Arizona State University. I work on improving model reuse, accessibility and discoverability through the development of the comses.net website and the CoMSES bibliographic database (catalog.comses.net). I also provide data analysis and software development advice on coupling models, version control, dependency management and data analysis to researchers and modelers.
My interests include model componentization, statistics, data analysis and improving model development and resuability practices.
I have developed several agent-based and cellular automata applications combining agent-based modelling, geographical information systems and visualisation to understand the complex mechanisms of decision making in land use change and environmental stewardship in order to analyse:
• the role of pastoral agriculture in regional development,
• the tradeoffs between land use intensification and water quality,
• the adoption of land-based climate change mitigation practices, and
• the incorporation of cultural values into spatial futures or scenario modelling.
Intrapreneur and experienced Consultant with a demonstrated history in the energy industry. Skilled in Business Planning, Corporate Finance, Digital Transformation and Analytics. Strong consulting professional focused in Organizational Development and Project Management. I have a degree in Industrial Engineering from the Rio de Janeiro State University (2000) and a master’s degree in Economics from Brazilian Institute of Capital Markets IBMEC (2003). Has experience in the area of Computer Science, with emphasis on Modeling of Complex Systems.
Complex Systems
Agent-based Models
System Dynamics
Innovation
Economics
Organizational Development
Dr. Gravel-Miguel is currently looking for work. For the past 2.5 years, she worked as a Research Scientist at the New Mexico Consortium, training Machine Learning models to find archaeological sites in lidar-derived imagery. Before that, she worked as a Postdoctoral Research Scholar for the Institute of Human Origins at Arizona State University. She does research in Archaeology and focuses on the Upper Paleolithic of Southwest Europe.
Archaeology, GIS, ABM, social networks, portable art, ornaments, data science, machine learning, lidar
I am a marine environmental scientist by training (U Oldenburg, 2001) with a PhD in atmospheric physics (U Wuppertal, 2005) and a strong modeling focus throughout my career.
I have built models (C, C++) for understanding the regional transitions from hunting-gathering subsistence to agropastoral life styles throughout the world. The fundamental principle of these models is to consider aggregate traits of populations, such as the preference for a subsistence style. I applied these models to the European “Wave of Advance”, to the disintegration of the urban Indus civilisation and to the differential emergence of agropastoralism in the Americas versus Europe, but also globally. An interesting outcome of these models are global and reginoally resolved prehistoric CO2 emissions caused by the land use transitions.
I have built and applied models for understanding the ecological relations and biogeochemical flows through the North Sea ecosystem. Also for this research I apply trait-based models, looking at traits such as vertical positioning or energy allocation. As an outcome, I have, e.g., estimated the biomass of blue mussels in the North Sea and quantified the effect of Offshore Wind Farm biofouling on the sea’s produtivity.
I led the development of the Earth System coupler MOSSCO, leveraging ESMF technologies. I like to rip legacy models apart and reconstruct them with interoperability and reusability by design. I contribute to building the next-generation modular hurricane forecasting system.
As a member of the Open Modeling Foundation (OMF), I am an evangelist of good scientific software practices, and educate and publish about improving underlying assumptions, stating clear purposes, keeping models simple and aquiring tools to further good practices.
Olá, I’m Daniel! 👋
I’m an R(esearcher) at the University of São Paulo (USP) working on complex systems and data science. My family name is actually KACHvartanian, but I go by Vartanian to save everyone from a linguistic workout.
I love building open-source tools, being part of active communities, and working with the R, Python, and NetLogo programming languages. When I’m not coding, I’m likely watching a good movie, seeing friends, wandering through new places, or tinkering with some obscure new thing that may or may not go anywhere.
Displaying 10 of 371 results for "Am Vaes - Van De Hulsbeek" clear search