Displaying 4 of 14 results game theory clear search
Tarik Hadzibeganovic is a complex systems researcher and cognitive scientist interested in all challenging topics of mathematical and computational modeling, in both basic and applied sciences. His particular focus has been on several open questions in evolutionary game theory, behavioral mathematical epidemiology, sociophysics, network theory, and episodic memory research. When addressing these questions, he combines mathematical, statistical, and agent-based modeling methods with laboratory behavioral experiments and Big Data analytics.
Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.
I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.
While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.
Flaminio Squazzoni is Full Professor of Sociology at the Department of Social and Political Sciences of the University of Milan and director of BEHAVE. He teaches “Sociology” to undergraduate students, “Behavioural Sociology” to master students and “Behavioural Game Theory” to PhD students. Untill November 2018, he has been Associate Professor of Economic Sociology at the Department of Economics and Management of the University of Brescia, where he led the GECS-Research Group on Experimental and Computational Sociology.
He is editor of JASSS-Journal of Artificial Societies and Social Simulation, co-editor of Sociologica -International Journal for Sociological Debate and member of the editorial boards of Research Integrity and Peer Review and Sistemi Intelligenti. He is advisory editor of the Wiley Series in Computational and Quantitative Social Science and the Springer Series in Computational Social Science and member of the advisory board of ING’s ThinkForward Initiative. He is former President of the European Social Simulation Association (Sept 2012/Sept 2016, since 2010 member of the Management Committee) and former Director of the NASP ESLS PhD Programme in Economic Sociology and Labour Studies (2015-2016).
His fields of research are behavioural sociology, economic sociology and sociology of science, with a particular interest on the effect of social norms and institutions on cooperation in decentralised, large-scale social systems. His research has a methodological focus, which lies in the intersection of experimental (lab) and computational (agent-based modelling) research.
Adapting Agents on Evolving Networks: An evolutionary game theory approach
Displaying 4 of 14 results game theory clear search