Displaying 10 of 78 results for "Jillian Student" clear search
The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.
To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.
land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling
The Ph.D. research project is mainly focused on the study of the influence of emotional intelligence inside decision-making processes and on the social and emotional aspects of organizations.Furthermore, the research has taken into account the generative science paradigm: in this way, the general aim is the development of social simulations able to account organizational processes related with emotions and with the emotional intelligence from the bottom-up.
My PHD project focuses on understanding factors influencing individual sustainable consumption behaviour and how these factors could promote a sustainability transition.
Assistant Proffesor at Faculty of Human Geography, Adam Mickiewicz University, Poland
Evolutionary computation
Modeling, companion modeling, role playing games, serious games, multi-agent systems, agent-oriented simulation, complex systems, water management, artificial intelligence
PhD student at University of Toronto: memes, social networks, contagion, agent based modeling, synthetic populations
Displaying 10 of 78 results for "Jillian Student" clear search