Displaying 10 of 21 results for "Claudia Pahl-Wostl" clear search
Modeling of spatialized social-ecological-agrosystems
Mathematical modeling
agent-based modeling
coupling of agent-based models and mathematical models
machine learning algorithms
deep learning algorithms
Statistical inference
infectious diseases modeling
Anna Pagani is an architect and doctoral researcher under the supervision of Prof. Claudia R. Binder in the interdisciplinary laboratory for Human-Environment Relations in Urban Systems (HERUS) at École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. In her PhD, she works closely with tenants, housing providers and practitioners to provide housing that is not only environmentally but also socioculturally sustainable.
Her research interests revolve around the relationship between the human and material components of the built environment, and more specifically on the introduction of a systems perspective to housing studies.
Researcher at LASTIG lab (https://www.umr-lastig.fr)
Agent based modeling and simulation for social sciences
Model exploration
Dr. Gravel-Miguel currently works as a Postdoctoral Research Scholar for the Institute of Human Origins at Arizona State University. She does research in Archaeology and focuses on the Upper Paleolithic of Southwest Europe. She currently works on projects ranging from cultural transmission to human-environment interactions in prehistory.
Archaeology, GIS, ABM, social networks, portable art, ornaments, data science
I work as a Senior Researcher at the Centre for Modeling Social Systems (CMSS) at the Norwegian Research Centre (NORCE) sinde 2023. Before, I worked as an Expert Research Engineer at the CEA LIST Institute, Paris-Saclay University in France from 2013 to 2023. I hold a PhD in Artificial Intelligence degree from the Paul Sabatier University (France) and a PhD in Computer Engineering degree from the Ege University (Turkey).
I work in the field of complex adaptive systems, specializing in multi-agent systems, simulation, machine learning, collective intelligence, self-organization, and self-adaptation. I am interested in contributing to innovative projects and research in these domains.
My experience spans across multiple large-scale international research projects in areas such as green urban logistics, blockchain for nuclear applications, autonomous robotics systems and simulation of biological neural networks.
Paul Hart BSc (Liverpool), BA (Open University), PhD (Liverpool), MAE, FLS, FMBA. From 1973-1976 I worked on the Continuous Plankton Recorder (CPR) survey at the Oceanographic Laboratory, Edinburgh. From 1973 – 1976 I was employed by Nordreco AB (a Nestlé R & D company) in Sweden as a fishery biologist where he advised the Findus group on fish raw material supplies and assessed the future potential of aquaculture. In 1976 I moved to the University of Leicester as a lecturer in aquatic biology. My research focused on the foraging behaviour of fish with a side interest in marine commercial fisheries. I retired as Professor and Head of the Department of Biology and am now an Emeritus Professor. I was a Trustee of the Sir Alister Hardy Foundation for Ocean Science, which ran the Continuous Plankton Recorder Survey until it was merged with the Marine Biological Association: I then became a Trustee of the MBA. From 2010 – 2016 I was a member of the Science Advisory Board of Marine Scotland. I am co-author of Fisheries Ecology (1982) and co-editor of the two-volume Handbook of Fish Biology and Fisheries (2002). I was a co-editor of the journal Fish and Fisheries (Wiley) between 2000 and 2021.
IBMs of fisheries exploring management options and consequences of social behaviour.
Interested in numerical models and new conceptual ideas, applications from industry to medicine.
I focus on numerical modeling of mechanics of solid materials and cell mechanics. The models that I developed so far address granular matters, bio-fluids, cellular tissues, and individual cells.
I further develop Agent-based Models, which are methods to predict collective behavior from individual dynamics controlled by rules or differential equations. Examples: tumor growth, swarms, crowd movement.
The methods I used are Particle-based methods which offer great flexibility within physical modeling, and can operate in a large range of scales, from atomistic scales (e.g. Molecular Dynamics) to continuum approaches (e.g. Smoothed Particle Hydrodynamics).
Displaying 10 of 21 results for "Claudia Pahl-Wostl" clear search