Displaying 10 of 170 results for "Benjamin I Czaczkes" clear search
Guido Fioretti, born 1964, graduated in Electronic Engineering in 1991 at La Sapienza University, Rome. In 1995, he received a PhD in Economics from this same university. Guido Fioretti is currently a lecturer of Organization Science at the University of Bologna.
I am interested in combining social with cognitive sciences in order to model decision-making facing uncertainty. I am particularly interested in connectionist models of individual and organizational decision-making.
I may make use of agent-based models, statistical network analysis, neural networks, evidence theory, cognitive maps as well as qualitative research, with no preference for any particular method. I dislike theoretical equilibrium models and empirical research based on testing obvious hypotheses.
About me
Name: Dr. Julia Kasmire
Position: Post-doctoral Research Fellow
Where: UK Data Services and Cathie Marsh Institute at the University of Manchester.
Short Bio
2004 - BA in Linguistics from the University of California in Santa Cruz, including college honours, departmental honours and one year of study at the University of Barcelona.
2008 - MSc in the Evolution of Language and Cognition from the University of Edinburgh, with a thesis on the effects of various common simulated population features used when modelling language learning agents.
2015 - PhD from Faculty of Technology, Policy and Management at the Delft University of Technology under the supervision of Prof. dr. ig. Margot Wijnen, Prof. dr. ig. Gerard P.J. Dijkema, and Dr. ig. Igor Nikolic. My PhD thesis and propositions can be found online, as are my publications and PhD research projects (most of which addressed how to study transitions to sustainability in the Dutch horticultural sector from a computational social science and complex adaptive systems perspective).
Additional Resources
Many of the NetLogo models I that built or used can be found here on my CoMSES/OpenABM pages.
My ResearchGate profile and my Academia.org profile provide additional context and outputs of my work, including some data sets, analytical resources and research skills endorsements.
My LinkedIn profile contains additional insights into my education and experience as well as skills and knowledge endorsements.
I try to use Twitter to share what is happening with my research and to keep abreast of interesting discussions on complexity, chaos, artificial intelligence, evolution and some other research topics of interest.
You can find my SCOPUS profile and my ORCID profile as well.
Complex adaptive systems, sustainability, evolution, computational social science, data science, empirical computer science, industrial regeneration, artificial intelligence
My field of interests concerns two axes:
First, epistemology of computational modeling and simulation of complex systems. I am particularly interested in a sociological inquiry about social implication of knowledge derived from complex systems’ study.
Second, assessing the possibilities and limits of studying social complexity with complex systems tools, particularly, agent-based modeling and simulation.
I am an anthropological archaeologist with broad interests in hunter-gatherers, lithic technology, human evolution, and complex systems theory. I am particularly interested in understanding processes of long term social, evolutionary, and adaptational change among hunter-gatherers, specifically by using approaches that combine archaeological data, ethnographic data, and computational modeling.
I am broadly interested in using Agent-based Modelling, Microsimulation, Geosimulation or a hybrid of these approaches as methodology to investigate complex dynamics of systems in various domains. I am also interested in exploring the potential of simulation models as decision support and policy-informing tools.
Primate evolutionary biologist and geneticist at the University of Texas at Austin
I conduct long-term behavioral and ecological field research on several species in the primate community of Amazonian Ecuador to investigate the ways in which ecological conditions (such as the abundance and distribution of food resources) and the strategies of conspecifics together shape primate behavior and social relationships and ultimately determine the kinds of societies we see primates living in. This is a crucial and central focus in evolutionary anthropology, as understanding the ways in which behavior and social systems are shaped by environmental pressures is a fundamental part of the discipline.
I complement my field studies with molecular genetic laboratory work and agent-based simulation modeling in order to address issues that are typically difficult to explore through observational studies alone, including questions about dispersal behavior, gene flow, mating patterns, population structure, and the fitness consequences of individual behavior. In collaboration with colleagues, I have also started using molecular techniques to investigate a number of broader questions concerning the evolutionary history, social systems, and ecological roles of various New World primates.
I am a Ph.D. student studying the interactions between external regulations and social norms in natural resource management and international development. In particular, I am looking to use mixed methods research, including ethnographic research, field experiments, and agent-based computational models to explore the sustainability of market-based interventions and their possible perverse outcomes.
My research interests include statistical mechanics, chaos theory and complex systems. I am also interested in simulations of social and economical systems.
Community assembly after intervention by coral transplantation
The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.
Displaying 10 of 170 results for "Benjamin I Czaczkes" clear search