Displaying 10 of 240 results for "Dave van Wees" clear search
PhD student at University of Toronto: memes, social networks, contagion, agent based modeling, synthetic populations
To tackle the scientific challenges proposed by landscape dynamics and cooperation processes, I have developed a research methodology based on field work and companion modelling (ComMod) combined with the formalisation of the observed processes and agents based models.
This approach offers the possibility to understand : spatial, social, cultural and / or economic conditions that take place on territories, and to provide prospective scenarios.
These methods have been applied in various contexts: steep slope vineyards landscapes (2011), water resource management cooperation (2015), vegetation cover in dry climate (2017). The established research networks are still active through sustained collaborations and activities.
My technical expertise grew and evolved through investment in several workgroups: MAPS Team (Modelling Applied to Space Phenomena), OSGeo (president of the OSGeo’s French chapter between 2013 and 2016, member of the OSGeo-international chapter since 2015), various initiatives around modelling, exploration and sensibility analysis of spatial patterns behaviours, and more generally in Free Software communities.
I am interested in the socio-environmental conditions for the emergence of cooperation and mutual aid in social systems and mainly with regard to renewable resources. I consider in this context that Commons are a spatial manifestation of mutual aid.
From a technical point of view, I am very interested in the questions of model exploration (HPC), which led me to integrate the OpenMole community and to contribute to discussions about heuristic exploration.
In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’
To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.
Scott Heckbert (PhD 2010) is the Principal Environmental Scientist at the Alberta Energy Regulator, and an Adjunct Professor at University of Alberta and University of Lethbridge, Canada. Scott’s area of specialization is combining agent-based models, GIS, and 3D visualization. These technologies are used as digital laboratories where scientists, decision makers, and stakeholders can interact for improved understanding of complex social-environmental systems.
Environmental impact, hydrology, land use change, digital twinning, experimental economics, GIS, 3D, agent-based models.
For my Ph.D. thesis, I developed a system to play poker.
I’m interested to see whether a similar approach can be applied to agent based models.
performance of urban water service provision, high levels of inequities and inefficiency persist. In terms of water distribution and cost, these undesirable patterns have a high impact on peri-urban areas usually populated by marginalized and poor populations. The high levels of Non-Revenue Water (NRW), together with the existence of corrupt practices and mismanagement of water utilities, remain a highly controversial issue.
This situation confronts rent-seeking theory directly, explaining the performance-corruption relationship (Repetto, 1986). The presumption is that low performance in water supply service provision results from corruption because rent-seeking occurs. Hence, the implementation of performance-oriented reforms in the water supply sector, such as regulation or private sector participation, will reduce corruption, increasing the efficiency of water service provision. Nevertheless, latest evidence shows that “key elements of good political governance have a positive effect on the access to water services in developing countries. In turn, private sector participation has little influence other than increasing internal efficiency of water providers” (Krausse, 2009).
Indeed the relation between governance, corruption and performance seems to be more complex than theory wants to acknowledge. It must be reviewed further than a simple cause-effect relationship. It appears that poor management of water utilities, evidenced by high levels of NRW, justifies new investments. Such practices can be encouraged by an “opportunistic management”, whilst at the same time maintaining an influential “hydrocratic elite” in the sphere of water control.
The present research proposal aims to understand the relation between mismanagement and corruption of water control practices in water supply service provision. The research examines how this relationship affects the performance of water service provision and relates to water supply governance models at municipal peri-urban level in three African countries.
To understand the mismanagement-corruption relationship, we look at different case studies of water supply service provision in Senegal, Ghana and Kenya. Each case represents a different governance model in terms of management practices, institutional and organizational settings, and the actors in place, which affects the performance of water service provision in terms of allocative efficiency and access to water (equity). Whether regulation, decentralization and private sector participation constitute possible ways to reduce corruption is examined in the context of water sector reform.
In a second step, we propose a theoretical model based on Agent Based Modelling (ABM) (Pahl-Wostl, 2007) to reproduce complex social networks under a Socio-Ecological System (SES) framework approach. The model will allow us to test whether collaborative governance in the form of collective action in a participatory and negotiated decision-making process for water control, can reduce corruption and increase performance.
The present research benefits from the project “Transparency and Integrity in Service Delivery in Sub-Saharan Africa”. This project, carried out by Transparency International (TI) in 8 Sub-Saharan countries, aims to increase access to education, health and water by improving transparency and integrity in basic service delivery. The proposal retains focus on Senegal, Ghana and Kenya in the water sector.
Key words: water control, mismanagement, corruption, performance, collaborative governance, modelling, collective action, negotiation, participation
Raquel Guimaraes is a Postdoctoral Research Scholar at IIASA with support from the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES). She is hosted by the Advanced Systems Analysis (ASA), Risk and Vulnerability (RISK), and World Population (POP) programs. Dr. Guimaraes is currently on sabbatical leave from her appointment as an Adjunct Professor in the Economics Department at the Federal University of Paraná (Brazil), where she carries out research on, as well as teaching, economic demography, development microeconomics and applied microeconometrics.
In her research at IIASA, Dr. Guimaraes aims to contribute to the extant literature and to policy-making by offering a case study from Brazil, examining whether and how individual exposure to floods did or not induce affected migration in a setting with intense urbanization, the city of Governador Valadares, in the State of Minas Gerais. To elucidate the role of vulnerability at the household-level in mediating the relationship between mobility and floods, she will rely on causal models and simulation analysis. Her study is aligned with and will have support from, the Brazilian Network for Research on Global Climate Change (Rede Clima), which is an important pillar in support of R&D activities of the Brazilian National Climate Change Plan.
Dr. Guimaraes graduated from the Federal University of Minas Gerais, Brazil, in 2007 with degrees in economics. She completed an MA degree in International Comparative Education at Stanford University (2011) and earned a doctorate in demography from the Federal University of Minas Gerais in 2014.
Adapting Agents on Evolving Networks: An evolutionary game theory approach
This paper investigates how collective action is affected when the interaction is driven by the underlying hierarchical structure of an organization, e.g., a company. The performance of collection action is measured as the rate of contribution to a public good, e.g., an organization’s objective.
Aniruddha Belsare is a disease ecologist with a background in veterinary medicine, interspecific transmission, pathogen modeling and conservation research. Aniruddha received his Ph.D. in Wildlife Science (Focus: Disease Ecology) from the University of Missouri in 2013 and subsequently completed a postdoctoral fellowship there (University of Missouri, May 2014 – June 2017). He then was a postdoctoral fellow in the Center for Modeling Complex Interactions at the University of Idaho (June 2017 - March 2019) and later a Research Associate with the Boone and Crockett Quantitative Wildlife Center, Michigan State University (March 2019 - Jan 2021). He was a Research Scientist in the Civitello Disease Ecology Lab at Emory University from Jan 2021 to Jan 2023. Currently, Aniruddha is an Assistant Professor of Disease Ecology at the College of Forestry, Wildlife & Environment / College of Veterinary Medicine at Auburn University.
My research interests primarily lie at the interface of ecology and epidemiology, and include host-pathogen systems that are of public health or conservation concern. I use ecologic, epidemiologic and model-based investigations to understand how pathogens spread through, persist in, and impact host populations. Animal disease systems that I am currently working on include canine rabies, leptospirosis, chronic wasting disease, bighorn sheep pneumonia, raccoon roundworm (Baylisascaris procyonis), chytridiomycosis, and Lyme disease.
Displaying 10 of 240 results for "Dave van Wees" clear search