Displaying 10 of 238 results agent-based clear search
PhD student in economics
Agent-based Modeling, Maching Learning, Algorithmic Marketing, Diffusion of Innovations, Online Communities
My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.
Garry Sotnik is a lecturer at the Stanford Doerr School of Sustainability, teaching human adaptation to climate change, decision-making, and transformative social change.
complexity, agent-based modeling, cognition
I am a University Academic Fellow (UAF) in the School of Geography at the University of Leeds. My research areas are agent-based modelling, decision making in complex systems, AI and multi-agent systems, urban analytics and housing markets. I obtained PhD in Economics from Iowa State University under supervisor Prof. Leigh Tesfatsion in 2014. I worked as a researcher at the James Hutton Institute in Aberdeen, Scotland between 2014 and 2019. I joined the University of Leeds as a UAF of Urban Analytics in 2019. I am originally from Shanghai, China.
My main research areas are agent-based modelling, urban analytics and complex decision making enabled by AI. I am interested in the bottom-up transition of complex urban systems under major socio-economic and environmental shocks, such as climate change and the fourth industrial revolution. I want to understand how cities as self-organised complex systems respond to external shocks and evolve under a constantly changing environment. In the past, I have looked at various aspects of urban systems, including the housing market, the labour market, transport and energy system. I am also interested in decision making in complex systems. For example, I have studied the decision to become a vegetarian/vegan under social influence. I have also looked at global food trade in a complex trade network and the resulting food and nutrition security. Recently, I am interested in applying AI algorithms especially reinforcement learning in multi-agent systems, including applications of AI in urban adaptation to climate change, housing market dynamics and criminal behaviour in an urban system.
I received my BSc, MSc, and PhD from the University of Nottingham. My PhD focuses on the Agent-Based Modelling and Simulation (ABMS) of Public Goods Game (PGG) in Economics. In my thesis, a development framework was developed using software-engineering methods to provide a structured approach to the development process of agent-based social simulations. Also as a case study, the framework was used to design and implement a simulation of PGG in the continuous-time setting which is rarely considered in Economics.
In 2017, I joined international, inter-disciplinary project CASCADE (Calibrated Agent Simulations for Combined Analysis of Drinking Etiologies) to further pursue my research interest in strategic modelling and simulation of human-centred complex systems. CASCADE, funded by the US National Institutes of Health (NIH), aims to develop agent-based models and systems-based models of the UK and US populations for the sequential and linked purposes of testing theories of alcohol use behaviors, predicting population alcohol use patterns, predicting population-level alcohol outcomes and evaluating the impacts of policy interventions on alcohol use patterns and harmful outcomes.
Interested in numerical models and new conceptual ideas, applications from industry to medicine.
I focus on numerical modeling of mechanics of solid materials and cell mechanics. The models that I developed so far address granular matters, bio-fluids, cellular tissues, and individual cells.
I further develop Agent-based Models, which are methods to predict collective behavior from individual dynamics controlled by rules or differential equations. Examples: tumor growth, swarms, crowd movement.
The methods I used are Particle-based methods which offer great flexibility within physical modeling, and can operate in a large range of scales, from atomistic scales (e.g. Molecular Dynamics) to continuum approaches (e.g. Smoothed Particle Hydrodynamics).
I develop simulation tools for generating what-if scenarios for decision making. I predominantly use Agent-Based Modelling (ABM) technique as most of my simulations model complex systems. In some cases, I have extended existing tools with modifications to model the given system. Although the tools are meant for research purposes, I have followed industry friendly delivery mechanisms, such as unit-tests, automated builds and delivery on cloud platforms.
Cristina Montañola Sales is an assistant professor at Institut Químic de Sarrià in Ramon Llull University, where she teaches subjects in ICT and statistics. She holds a PhD in Statistics and Operations Research and specializes in the investigation of novel quantitative methods for studying human behavior, such as agent-based models and spatio-temporal analysis. Her interdisciplinary research combines mathematics with social sciences, biomedicine and High-Performance Computing. She has studied various contexts, such as the dynamics of mobility of Gambian emigrants, demographic forecasting in South Korea, and ecological resilience of hunter-gatherers in India. Her research on tuberculosis transmissions and COVID-19 has advanced knowledge in epidemics, demographic dynamics and computational statistics. She has published articles and participated in international projects on simulation, parallel computing and global health.
validation, computer performace, epidemics, demography
BIGSSS-Departs PhD Fellow
Bremen International Graduate School of Social Sciences / Jacobs University (Germany)
PhD project: Residential Segregation and Intergenerational Immigrant Integration: A Schelling-Esser Model
Italian PhD fellow, fond of social complexity and agent-based modeling, applied to residential segregation and integration processes
Research Interests: Agent-based modeling, migrant integration, residential segregation
Displaying 10 of 238 results agent-based clear search