Displaying 10 of 142 results for "Miriam C. Kopels" clear search
Dr. Dawn Parker is a professor at the University of Waterloo in the School of Planning. Her research focuses on the development of integrated socio-economic and biophysical models of land-use change. Dr. Parker works with agent-based modeling, complexity theory, geographic information systems, and environmental and resource economics. Her current ongoing projects include Waterloo Area Regional Model (WARM) Urban intensification vs. suburban flight, a SSHRC funded development grant that explores the causal relationships between light rail transit and core-area intensification, and the Digging into Data MIRACLE (Mining relationships among variables in large datasets from complex systems) project.
I have been researching in synchronization between agent-based-models (ABM) and multi robot systems used in logistic and manufacturing. I use Netlogo as ABM.
I develop and agile methodology to use the same ABM as supervisory control and data aquisition (SCADA). The framework works fine and I test it in two SCADAs, which you can see in my youtube channel (http://www.youtube.com/channel/UCJIb_UL-ak98F5OZxOHL0FQ).
Antônio Sousa is a biologist with a background in medical entomology, disease ecology, statistical and computational modeling. Antônio has a Ph.D. (2018) and Master (2014) in Science from the School of Public Health at the University of São Paulo, Brazil. Currently, he is a postdoctoral fellow in the same institution.
My research interest lies in the study of the transmission and dispersal dynamics of vector-borne diseases. I have been working on the development of statistical, mathematical and computational models to understand bioecology of mosquitoes and to predict the transmission dynamics of pathogens transmitted by these insects.
I am a computational archaeologist with a strong background in humanities and social sciences, specialising in simulating socioecological systems from the past.
My main concern has been to tackle meaningful theoretical questions about human behaviour and social institutions and their role in the biosphere, as documented by history and archaeology. My research focuses specifically on how social behaviour reflects long-term historical processes, especially those concerning food systems in past small-scale societies. Among the aspects investigated are competition for land use between sedentary farmers and mobile herders (Angourakis et al. 2014; 2017), cooperation for food storage (Angourakis et al. 2015), origins of agriculture and domestication of plants (Angourakis et al. 2022), the sustainability of subsistence strategies and resilience to climate change (Angourakis et al. 2020, 2022). He has also been actively involved in advancing data science applications in archaeology, such as multivariate statistics on archaeometric data (Angourakis et al. 2018) and the use of computer vision and machine learning to photographs of human remains (Graham et al. 2020).
As a side, but not less important interest, I had the opportunity to learn about video game development and engage with professionals in Creative Industries. In one collaborative initiative, I was able to combine my know-how in both video games and simulation models (\href{https://doi.org/10.1007/978-3-030-92843-8_15}{Szczepanska et al. 2022}).
Elizabeth Hunter received a BA in Mathematics and Economics at Boston University in 2011. She worked as a health economics researcher at Research Triangle Institute for three years where she worked on a team that developed the risk adjustment models for the US health insurance exchanges. She attended the University of Limerick and received an MSc in Mathematical Modelling in 2015. She completed a PhD at Technological University Dublin. Her PhD research focuses on agent-based simulations for infectious disease epidemiology with the goal of creating an agent-based simulation of Ireland. Elizabeth is currently working on the Precise4Q as a Postdoctoral researcher working on predictive modelling in stroke.
Dr. Andreu Moreno Vendrell got the BS degree in Telecommunications Engineering in 1995 and the PhD in Telecommunications Engineering in 2000, both from Universitat Politècnica de Catalunya (Spain). Since 2005 his research is related to parallel and distributed computing. His main interests are focused on high performance parallel applications, automatic performance analysis and dynamic tuning, and agent based simulation systems. He has been involved in the definition of performance models for automatic and dynamic performance tuning and in the development of a new benchmark for agent based frameworks. He is lecturer at the Escola Universitària Salesiana de Sarrià, associated college of Universitat Autònoma de Barcelona. He is IEEE member.
Agent-based systems
I discovered at the same time Agent-Based Modeling method and Companion Modelling approach during my master degrees (engeenering and artificial intelligence and decision) internship at CIRAD in 2005 and 2006 where I had the opportunity to participate as a modeller to a ComMod process (Farolfi et al., 2010).
Then, during my PhD in computer Science applied to Modeling and Simulation, I learned the Theory of Modeling and Simulation and the Discrete EVent System specification formalism and proposed a conceptual, formal and operational framework to evaluate simulation models based on the way models are used instead of their ability to reproduce the target system behavior (Bonté et al., 2012). Applied to the surveillance of Epidemics, this work was rather theoritical but very educative and structuring to formulate my further models and research questions about modeling and simulation.
From 2011 to 2013, I worked on viability theory applied to forest management at the Compex System Lab of Irstea (now Inrae) and learned about the interest of agregated models for analytical results (Bonté et al, 2012; Mathias et al, 2015).
Since 2013, I’m working for Inrae at the joint The Joint Research Unit “Water Management, Actors, Territories” (UMR G-EAU) where I’m involved in highly engaging interdisciplinary researches such as:
- The Multi-plateforme International Summer School about Agent Based Modelling and Simulation (MISSABMS)
- The development of the CORMAS (COmmon Pool Resources Multi-Agents Systems) agent-based modeling and simulation Platform (Bommel et al., 2019)
- Impacts of the adaptation to global changes using computerised serious games (Bonté et al., 2019; Bonté et al. , 2021)
- The use of experimentation to study social behaviors (Bonté et al. 2019b)
- The impact of information systems in SES trajectories (Paget et al., 2019a)
- Adaptation and transformations of traditional water management and infrastructures systems (Idda et al., 2017)
- Situational multi-agent approaches for collective irrigation (Richard et al., 2019)
- Combining psyhcological and economical experiments to study relations bewteen common pool resources situations, economical behaviours and psychological attitudes.
My research is about modelling and simulation of complex systems. My work is to use, and participate to the development of, integrative tools at the formal level (based on the Discrete EVent System Specification (DEVS) formalism), at the conceptual level (based on integrative paradigms of different forms such as Multi-Agents Systems paradigm (MAS), SES framework or viability theory), and at the level of the use of modelling and simulation for collective decision making (based on the Companion Modelling approach (ComMod)). Since 2013 and my integration in the G-EAU mixt research units, my object of studies were focused on multi-scale social and ecological systems, applied to water resource management and adaptation of territories to global change and I added experimentation to my research interest, developping methods combining agent-based model and human subjects actions.
As of my incorporation into the Department of Computer Architecture and Operating Systems of the UAB as a postgraduate student, it is possible to divide my scientific-technical career into the following stages:
Simulation of Parallel Applications (1992-99): Focused on the design and development of simulators of parallel applications. This research main objective was the definition of abstractions for parallel programs, based on characterizing tasks and their dependences. Two main abstractions were developed, at first a simpler one, which was easier to parametrize, and, next, a more complex an accurate one. Using these characterizations, several simulation tools were programmed and used in the context of national and European projects. As part of my Master’s thesis, I was involved in the design and development of some of these simulation applications.
National projects: 4, European: 2
International conferences: 3, National: 1, Journal papers: 3
Security in Distributed Systems (2007-12): Focused on the design and development of the FPVA (First Principles Vulnerability Assessment) methodology for the evaluation of vulnerabilities in Grid applications. This methodology clearly defined a set of steps for the assessment of Grid applications vulnerabilities, most of these steps could be automatized or at least supported by specific tools. Jointly with other professors of our group and from the University of Wisconsin, I was involved in the original definition and application of this methodology.
International projects: 2
Master Thesis: 1, Ph.D. Thesis: 1
International conferences: 2, National: 1, Journal papers: 2
Parallel Application Modeling (1999-present): This is my main line of research, aimed at defining high-level performance models for parallel applications. Initially, models were defined for MPI applications with a master-worker and pipeline structure, but later this line has been expanded with the definition of models for memory-intensive OpenMP applications, composed (mix of several structures) applications, applications based on mathematical libraries, distributed data-intensive applications and, finally, applications based on the simulation of agents (ABS) with SPMD structure.
As a result of the work on modeling the performance of ABS parallel systems, we have opened a new line for the definition and implementation of a benchmark for assessing the performance of the parallel simulators generated by well-known platforms, such as FLAME, Repast-HPC or D-Mason. In addition, the knowledge we have gained on this topic has opened new ways of collaboration for optimizing real parallel ABS in the health sciences area (tumor growth and infection spread).
National projects: 12, European: 1
International conferences: 17, National: 4, Journal papers: 11
International Presentations: 4
Parallel Applications Tuning Tools (2010-present): Focused on the design and development of tools for automatic tuning and, in some cases, also dynamic tuning of parallel applications. These tools allow the integration of performance models in the form of external components provided by the analyst. For this reason, this research line is tightly coupled with the Parallel Application Modeling one. The two main tools developed totally or partially by our group are Monitoring Analysis and Tuning Environment-MATE (and its highly scalable evolution ELASTIC) and Periscope Tuning Framework-PTF.
National projects: 2, European: 1
International conferences: 11, Journal papers: 2
Tools: MATE, ELASTIC, PTF
International Presentations: 5
Muaz is a Senior Member of the IEEE and has more than 15 years of professional, teaching and research experience. Muaz has been working on Communication Systems and Networks since 1995. His BS project in 1995 was on the development of a Cordless Local Area Network. In 1996, his postgraduate project was on Wireless Connectivity of devices to Computers. In addition to his expertise as an Communications engineer, his areas of research interest are in the development of agent-based and complex network-based models of Complex Adaptive Systems. He has worked on diverse case studies ranging from Complex Communication Networks, Biological Networks, Social Networks, Ecological system modeling, Research and Scientometric modeling and simulation etc. He has also worked on designing and developing embedded systems, distributed computing, multiagent and service-oriented architectures.
Ecology - Natural Resources Management (Community-based management)
I worked on natural resources management modelling in STELLA. I developed a technical and scientific model to analyze soil, climate and biological conditions to explain how Bamboo ecosystem works and how people in Cundinamarca, Colombia could focus on a sustainable model for use and manage forestry resources.
Also, I worked on the seventh framework program named: Community-based management of Environmental Challenges in Latin America -COMET-LA-. The project built a learning arena with scientists, civil society and government to identify sustainable models for governance of natural resources in social-ecological systems located in a rural context from Colombia, México and Argentina.
I am interesting in research on Modelling of governance and Community-based management of natural resources.
Displaying 10 of 142 results for "Miriam C. Kopels" clear search