Displaying 9 of 99 results for "Andrea L Balbo" clear search
I am a computational archaeologist interested in how individuals and groups respond to both large scale processes such as climate change and local processes such as violence and wealth inequality. I am currently a PhD Candidate in the Department of Anthropology at Washington State University.
My dissertation research focuses on experimenting with paleoecological data (e.g., pollen) to assess whether or not different approaches are feasible for paleoclimatic field reconstructions. In addition, I will also use pollen data to generate vegetation (biome) reconstructions. By using tree-ring and pollen data, we can gain a better understanding of the paleoclimate and the spatial distribution of vegetation communities and how those changed over time. These data can be used to better understand changes in demography and how people responded to environmental change.
In Summer 2019, I attended the Santa Fe Institute’s Complex Systems Summer School, where I got to work in a highly collaborative and interdisciplinary international scientific community. For one of my projects, I got to merry my love of Sci-fi with complexity and agent-based modeling. Sci-fi agent-based modeling is an anthology and we wanted to build a community of collaborators for exploring sci-fi worlds. We also have an Instagram page (@Scifiabm).
Amineh Ghorbani is an assistant professor at the Engineering Systems and Services Department, Delft University of Technology, the Netherlands. She is also an affiliated member of the “Institutions for Collective Action” at Utrecht University. She obtained her M.Sc. in Computer Science (Artificial intelligence) from University of Tehran (Iran) (2009, honours) and her PhD from Delft University of Technology (2013, cum laude).
During her PhD, Amineh developed a meta-model for agent-based modelling, called MAIA, which describes various concepts and relations in a socio-technical system. This modelling perspective helped her develop a modelling paradigm that she refers to as institutional modelling.
Her current area of research is understanding the emergence and dynamics of institutions (set of rule organizing human society) using modelling. She is interested in how bottom-up collective action emerges and how institutions emergence and change within communities.
collective action
institutional emergence
evolution of institutions
community energy systems
Community assembly after intervention by coral transplantation
The potential of transplantation of scleractinian corals in restoring degraded reefs has been widely recognized. Levels of success of coral transplantation have been highly variable due to variable environmental conditions and interactions with other reef organisms. The community structure of the area being restored is an emergent outcome of the interaction of its components as well as of processes at the local level. Understanding the
coral reef as a complex adaptive system is essential in understanding how patterns emerge from processes at local scales. Data from a coral transplantation experiment will be used to develop an individual-based model of coral community development. The objectives of the model are to develop an understanding of assembly rules, predict trajectories and discover unknown properties in the development of coral reef communities in the context of reef restoration. Simulation experiments will be conducted to derive insights on community trajectories under different disturbance regimes as well as initial transplantation configurations. The model may also serve as a decision-support tool for reef restoration.
Bashar Ourabi is a principle consultant at arabianconsult of Syria where he has been chairman since 2003. He holds Bsc. Eng., A Grad. Certificate in Project engineering from the University of Central Florida; and a MS. in Public Administration from the Doha Graduate Institute in Qatar.
Bashar completed his graduate studies at Doha Institute for Graduate Studies and his undergraduate studies at the Unversity of Central Florida. His research interests lie in the area of systems modelling, ranging from theory to design to implementation. He has collaborated actively with researchers in several other disciplines of computer science, system design, and bigData Artificial Intellegence, particularly BigData Expert System and Automated decision Making.
He has served on many international posts overlooking public infrastructure design and operations, varying from public transport, urban design and operations management. These posts spanned over the the US and the Middle East including Florida, UAE and Qatar.
Bashar has served on many conferences and workshop program committees and has succesfully delivered many corporate training programs..
BigData
Artificial Intellegence
Web Based Decision Making and Expert Systems
Fuzzy Logic
AgentBased Modelling
Discret Event Simulation
Corporate Support Systems
I am a geographer interested in exploring tourism system dynamics and assessing tourism’s role in environmental sustainability using agent-based modelling (ABM). My current work focus is on human complex systems interactions with the environment and on the application of tools (such as scenario analysis, network analysis and ABM) to explore topics systems adaptation, vulnerability and resilience to global change. I am also interested in looking into my PhD future research directions which pointed the potential of Big Data, social media and Volunteer Geographical Information to increase destination awareness.
I have extensive experience in GIS, quantitative and qualitative methods of research. My master thesis assessed the potential for automatic feature extraction from QuickBird imagery for municipal management purposes. During my PhD I have published and submitted several scientific papers in ISI indexed journals. I have a good research network in Portugal and I integrate an international research network on the topic “ABM meets tourism”. I am a collaborator in a recently awarded USA NCRCRD grant project “Using Agent Based Modelling to Understand and Enhance Rural Tourism Industry Collaboration” and applied for NSF funding with the project “Understanding and Enhancing the Resilience of Recreation and Tourism Dependent Communities in the Gulf”.
My initial training was in cadastre and geodesy (B.Eng from the Distrital University, UD, Colombia). After earning my Master’s degree in Geography (UPTC, Colombia) in 2003, I worked for the “José Benito Vives de Andreis” marine and coastal research institute (INVEMAR) and for the International Center for Tropical Agriculture (CIAT). Three years later, in 2006, I left Colombia to come to Canada, where I began a PhD in Geography with a specialization in modelling complex systems at Simon Fraser University (SFU), under the direction of Dr. Suzana Dragicevic (SAMLab). In my dissertation I examined the topic of spatial and temporal modelling of insect epidemics and their complex behaviours. After obtaining my PhD in 2011, I began postdoctoral studies at the University of British Columbia (2011) and the University of Victoria (2011-2013), where I worked on issues concerning the spatial and temporal relationships between changes in indirect indicators of biodiversity and climate change.
I am an Associate Professor in the Department of Geography at the University of Montreal. My research interests center around the incorporation of artificial intelligence and machine learning techniques into the development Agent-Based Models to solve complex socio-ecological problems in different kind of systems, such as urban, forest and wetland ecosystems.
The core of my research projects aim to learn more about spatial and temporal interactions and relationships driving changes in our world, by focusing on the multidisciplinary nature of geographical information science (GIScience) to investigate the relationships between ecological processes and resulting spatial patterns. I integrate spatial analysis and modeling approaches from geographic information science (GIScience) together with computational intelligence methods and complex systems approaches to provide insights into complex problems such as climate change, landscape ecology and forestry by explicitly representing phenomena in their geographic context.
Specialties: Agent-based modeling, GIScience, Complex socio-environmental systems, Forestry, Ecology
I am a computational archaeologist with a strong background in humanities and social sciences, specialising in simulating socioecological systems from the past.
My main concern has been to tackle meaningful theoretical questions about human behaviour and social institutions and their role in the biosphere, as documented by history and archaeology. My research focuses specifically on how social behaviour reflects long-term historical processes, especially those concerning food systems in past small-scale societies. Among the aspects investigated are competition for land use between sedentary farmers and mobile herders (Angourakis et al. 2014; 2017), cooperation for food storage (Angourakis et al. 2015), origins of agriculture and domestication of plants (Angourakis et al. 2022), the sustainability of subsistence strategies and resilience to climate change (Angourakis et al. 2020, 2022). He has also been actively involved in advancing data science applications in archaeology, such as multivariate statistics on archaeometric data (Angourakis et al. 2018) and the use of computer vision and machine learning to photographs of human remains (Graham et al. 2020).
As a side, but not less important interest, I had the opportunity to learn about video game development and engage with professionals in Creative Industries. In one collaborative initiative, I was able to combine my know-how in both video games and simulation models (\href{https://doi.org/10.1007/978-3-030-92843-8_15}{Szczepanska et al. 2022}).
Dr. William G. Kennedy, “Bill,” is continuing to learn in a third career, this time as an academic, a computational social scientist.
His first a career was in military service as a Naval Officer, starting with the Naval Academy, Naval PostGraduate School (as the first computer science student from the Naval Academy), and serving during the Cold War as part of the successful submarine-based nuclear deterrent. After six years of active duty service, he served over two decades in the Naval Reserves commanding three submarine and submarine-related reserve units and retiring after 30 years as a Navy Captain with several personal honors and awards.
His second career was in civilian public service: 10 years at the Nuclear Regulatory Commission and 15 years with the Department of Energy. At the NRC he rose to be an advisor to the Executive Director for Operations and the authority on issues concerning the reliance on human operators for reactor safety, participating in two fly-away accident response teams. He left the NRC for a promotion and to lead, as technical director, the entrepreneurial effort to explore the use of light-water and accelerator technologies for the production of nuclear weapons materials. That work led to him becoming the senior policy officer responsible for strategic planning and Departmental performance commitments, leading development of the first several DOE strategic plans and formal performance agreements between the Secretary of Energy and the President.
Upon completion of doctoral research in Artificial Intelligence outside of his DOE work, he began his third career as a scientist. That started with a fully funded, three-year post-doctoral research position in cognitive robotics at the Naval Research Laboratory sponsored by the National Academy of Science and expanding his AI background with research in experimental Cognitive Science. Upon completion, he joined the Center for Social Complexity, part of the Krasnow Institute for Advanced Study at George Mason University in 2008 where he is now the Senior Scientific Advisor. His research interests range from cognition at the individual level to models of millions of agents representing individual people. He is currently leading a multi-year project to characterize the reaction of the population of a mega-city to a nuclear WMD (weapon of mass destruction) event.
Dr. Kennedy holds a B.S. in mathematics from the U.S. Naval Academy, and Master of Science in Computer Science from the Naval PostGraduate School, and a Ph.D. in Information Technology from George Mason University and has a current security clearance. Dr. Kennedy is a member of Sigma Xi, the American Association for the Advancement of Science (AAAS), the Association for Computing Machinery (ACM), and a life member of Institute of Electrical and Electronics Engineers. He is a STEM volunteer with the Senior Scientists and Engineers/AAAS Volunteer Program for K-12 science, technology, engineering, and mathematics education in the DC-area schools.
Cognitive Science, Computational Social Science, Social Cognition, Autonomy, Cognitive Robotics
As of my incorporation into the Department of Computer Architecture and Operating Systems of the UAB as a postgraduate student, it is possible to divide my scientific-technical career into the following stages:
Simulation of Parallel Applications (1992-99): Focused on the design and development of simulators of parallel applications. This research main objective was the definition of abstractions for parallel programs, based on characterizing tasks and their dependences. Two main abstractions were developed, at first a simpler one, which was easier to parametrize, and, next, a more complex an accurate one. Using these characterizations, several simulation tools were programmed and used in the context of national and European projects. As part of my Master’s thesis, I was involved in the design and development of some of these simulation applications.
National projects: 4, European: 2
International conferences: 3, National: 1, Journal papers: 3
Security in Distributed Systems (2007-12): Focused on the design and development of the FPVA (First Principles Vulnerability Assessment) methodology for the evaluation of vulnerabilities in Grid applications. This methodology clearly defined a set of steps for the assessment of Grid applications vulnerabilities, most of these steps could be automatized or at least supported by specific tools. Jointly with other professors of our group and from the University of Wisconsin, I was involved in the original definition and application of this methodology.
International projects: 2
Master Thesis: 1, Ph.D. Thesis: 1
International conferences: 2, National: 1, Journal papers: 2
Parallel Application Modeling (1999-present): This is my main line of research, aimed at defining high-level performance models for parallel applications. Initially, models were defined for MPI applications with a master-worker and pipeline structure, but later this line has been expanded with the definition of models for memory-intensive OpenMP applications, composed (mix of several structures) applications, applications based on mathematical libraries, distributed data-intensive applications and, finally, applications based on the simulation of agents (ABS) with SPMD structure.
As a result of the work on modeling the performance of ABS parallel systems, we have opened a new line for the definition and implementation of a benchmark for assessing the performance of the parallel simulators generated by well-known platforms, such as FLAME, Repast-HPC or D-Mason. In addition, the knowledge we have gained on this topic has opened new ways of collaboration for optimizing real parallel ABS in the health sciences area (tumor growth and infection spread).
National projects: 12, European: 1
International conferences: 17, National: 4, Journal papers: 11
International Presentations: 4
Parallel Applications Tuning Tools (2010-present): Focused on the design and development of tools for automatic tuning and, in some cases, also dynamic tuning of parallel applications. These tools allow the integration of performance models in the form of external components provided by the analyst. For this reason, this research line is tightly coupled with the Parallel Application Modeling one. The two main tools developed totally or partially by our group are Monitoring Analysis and Tuning Environment-MATE (and its highly scalable evolution ELASTIC) and Periscope Tuning Framework-PTF.
National projects: 2, European: 1
International conferences: 11, Journal papers: 2
Tools: MATE, ELASTIC, PTF
International Presentations: 5
Displaying 9 of 99 results for "Andrea L Balbo" clear search