Guido Fioretti

Guido Fioretti, born 1964, graduated in Electronic Engineering in 1991 at La Sapienza University, Rome. In 1995, he received a PhD in Economics from this same university. Guido Fioretti is currently a lecturer of Organization Science at the University of Bologna.

Research Interests

I am interested in combining social with cognitive sciences in order to model decision-making facing uncertainty. I am particularly interested in connectionist models of individual and organizational decision-making.

I may make use of agent-based models, statistical network analysis, neural networks, evidence theory, cognitive maps as well as qualitative research, with no preference for any particular method. I dislike theoretical equilibrium models and empirical research based on testing obvious hypotheses.

Peer reviewed Emergence of Organizations out of Garbage Can Dynamics

Guido Fioretti | Published Monday, April 20, 2020 | Last modified Sunday, April 26, 2020

The Garbage Can Model of Organizational Choice (GCM) is a fundamental model of organizational decision-making originally propossed by J.D. Cohen, J.G. March and J.P. Olsen in 1972. In their model, decisions are made out of random meetings of decision-makers, opportunities, solutions and problems within an organization.
With this model, these very same agents are supposed to meet in society at large where they make decisions according to GCM rules. Furthermore, under certain additional conditions decision-makers, opportunities, solutions and problems form stable organizations. In this artificial ecology organizations are born, grow and eventually vanish with time.

Peer reviewed The Garbage Can Model of Organizational Choice

Guido Fioretti | Published Monday, April 20, 2020 | Last modified Thursday, April 23, 2020

The Garbage Can Model of Organizational Choice is a fundamental model of organizational decision-making originally proposed by J.D. Cohen, J.G. March and J.P. Olsen in 1972. In the 2000s, G. Fioretti and A. Lomi presented a NetLogo agent-based interpretation of this model. This code is the NetLogo 6.1.1 updated version of the Fioretti-Lomi model.

Knowledge Based Economy (KBE) is an artificial economy where firms placed in geographical space develop original knowledge, imitate one another and eventually recombine pieces of knowledge. In KBE, consumer value arises from the capability of certain pieces of knowledge to bridge between existing items (e.g., Steve Jobs illustrated the first smartphone explaining that you could make a call with it, but also listen to music and navigate the Internet). Since KBE includes a mechanism for the generation of value, it works without utility functions and does not need to model market exchanges.

Wolf-sheep predation Netlogo model, extended, with foresight

andreapolicarpi Guido Fioretti | Published Wednesday, September 16, 2020 | Last modified Tuesday, April 13, 2021

This model is an extension of the Netlogo Wolf-sheep predation model by U.Wilensky (1997). This extended model studies several different behavioural mechanisms that wolves and sheep could adopt in order to enhance their survivability, and their overall impact on global equilibrium of the system.

We reconstruct Cohen, March and Olsen’s Garbage Can model of organizational choice as an agent-based model. We add another means for avoiding making decisions: buck-passing difficult problems to colleagues.

This article presents an agent-based model of an Italian textile district where thousands of small firms specialize in particular phases of fabrics production. It reconstructs the web of communication between firms as they arrange production chains. In turn, production chains result in road traffic between the geographical areas on which the district extends. The reconstructed traffic exhibits a pattern that has been observed, but not foreseen, by policy makers.

Under development.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept