Community Events

rOpenSci Community Call: Reproducible Workflows at Scale with drake


Ambitious workflows in R, such as machine learning analyses, can be difficult to manage. A single round of computation can take several hours to complete, and routine updates to the code and data tend to invalidate hard-earned results. You can enhance the maintainability, hygiene, speed, scale, and reproducibility of such projects with the drake R package. drake resolves the dependency structure of your analysis pipeline, skips tasks that are already up to date, executes the rest with optional distributed computing, and organizes the output so you rarely have to think about data files. This talk demonstrates how to create and maintain a realistic machine learning project using drake-powered automation.

This 1-hour Community Call will include a presentation by drake developer, Will Landau, and at least 20 minutes for Q & A.

Discussion

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept