Computational Model Library

Displaying 10 of 1090 results for "Aad Kessler" clear search

ICARUS is a multi-agent compliance inspection model (ICARUS - Inspecting Compliance to mAny RUleS). The model is applicable to environments where an inspection agency, via centrally coordinated inspections, examines compliance in organizations which must comply with multiple provisions (rules). The model (ICARUS) contains 3 types of agents: entities, inspection agency and inspectors / inspections. ICARUS describes a repeated, simultaneous, non-cooperative game of pure competition. Agents have imperfect, incomplete, asymmetric information. Entities in each move (tick) choose a pure strategy (comply/violate) for each rule, depending on their own subjective assessment of the probability of the inspection. The Inspection Agency carries out the given inspection strategy.

A more detailed description of the model is available in the .nlogo file.
Full description of the model (in line with the ODD+D protocol) and the analysis of the model (including verification, validation and sensitivity analysis) can be found in the attached documentation.

Spatio-Temporal Dynamic of Risk Model

J Jumadi | Published Tuesday, October 22, 2019 | Last modified Sunday, January 05, 2020

This model aims to simlulate the dynamic of risk over time and space.

Diet breadth model from Optimal Foraging Theory (Human Behavioral Ecology)

C Michael Barton | Published Wednesday, November 26, 2008 | Last modified Thursday, March 12, 2015

Diet breadth is a classic optimal foraging theory (OFT) model from human behavioral ecology (HBE). Different resources, ranked according to their food value and processing costs, are distributed in th

DIAL1.0

P Dykstra | Published Wednesday, November 28, 2012 | Last modified Saturday, April 27, 2013

DIAL is a model of group dynamics and opinion dynamics. It features dialogues, in which agents put their reputation at stake. Intra-group radicalisation of opinions appears to be an emergent phenomenon.

The model is an agent-based artificial stock market where investors connect in a dynamic network. The network is dynamic in the sense that the investors, at specified intervals, decide whether to keep their current adviser (those investors they receive trading advise from). The investors also gain information from a private source and share public information about the risky asset. Investors have different tendencies to follow the different information sources, consider differing amounts of history, and have different thresholds for investing.

Peer reviewed Evolution of Sex

Kristin Crouse | Published Sunday, June 05, 2016 | Last modified Monday, February 15, 2021

Evolution of Sex is a NetLogo model that illustrates the advantages and disadvantages of sexual and asexual reproductive strategies. It seeks to demonstrate the answer to the question “Why do we have sex?”

This software simulates the Random-Subset Voting method for Borda, plurality, approval and Condorcet.

What is stable: the large but coordinated change during a diffusion or the small but constant and uncoordinated changes during a dynamic equilibrium? This agent-based model of a diffusion creates output that reveal insights for system stability.

Biodynamica

Klaus Jaffe | Published Saturday, December 24, 2016

Agent based simulation model for the study of the genetic evolution of sexual recombination and social behavior

A Multi-Agent Simulation Approach to Farmland Auction Markets

James Nolan | Published Wednesday, June 22, 2011 | Last modified Saturday, April 27, 2013

This model explores the effects of agent interaction, information feedback, and adaptive learning in repeated auctions for farmland. It gathers information for three types of sealed-bid auctions, and one English auction and compares the auctions on the basis of several measures, including efficiency, price information revelation, and ability to handle repeated bidding and agent learning.

Displaying 10 of 1090 results for "Aad Kessler" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept