Computational Model Library

Displaying 10 of 414 results for "Therese Lindahl" clear search

02 OamLab V1.10 - Open Atwood Machine Laboratory

Garvin Boyle | Published Saturday, January 31, 2015 | Last modified Thursday, April 13, 2017

Using chains of replicas of Atwood’s Machine, this model explores implications of the Maximum Power Principle. It is one of a series of models exploring the dynamics of sustainable economics – PSoup, ModEco, EiLab, OamLab, MppLab, TpLab, EiLab.

Using webs of replicas of Atwood’s Machine, we explore implications of the Maximum Power Principle. This is one of a series of models exploring the dynamics of sustainable economics – PSoup, ModEco, EiLab, OamLab, MppLab, TpLab, CmLab.

Ants in the genus Temnothorax use tandem runs (rather than pheromone trails) to recruit to food sources. This model explores the collective consequences of this linear recruitment (as opposed to highly nonlinear pheromone trails).

Benchmark for DMASON

Andreu Moreno Vendrell | Published Friday, November 22, 2024

Agent-based modeling and simulation (ABMS) is a class of computational models for
simulating the actions and interactions of autonomous agents with the goal of assessing
their effects on a system as a whole. Several frameworks for generating parallel ABMS
applications have been developed taking advantage of their common characteristics,
but there is a lack of a general benchmark for comparing the performance of generated
applications. We propose and design a benchmark that takes into consideration the

Ornstein-Uhlenbeck Pandemic package

Peter Cotton | Published Friday, April 24, 2020 | Last modified Friday, May 08, 2020

Pandemic (pip install pandemic)

An agent model in which commuting, compliance, testing and contagion parameters drive infection in a population of thousands of millions. Agents follow Ornstein-Uhlenbeck processes in the plane and collisions drive transmission. Results are stored at SwarmPrediction.com for further analysis, and can be retrieved by anyone.

This is a very simple simulation that in a special case can be shown to be approximated by a compartmental model with time varying infection rate.

Transhumants move their herds based on strategies simultaneously considering several environmental and socio-economic factors. There is no agreement on the influence of each factor in these strategies. In addition, there is a discussion about the social aspect of transhumance and how to manage pastoral space. In this context, agent-based modeling can analyze herd movements according to the strategy based on factors favored by the transhumant. This article presents a reductionist agent-based model that simulates herd movements based on a single factor. Model simulations based on algorithms to formalize the behavioral dynamics of transhumants through their strategies. The model results establish that vegetation, water outlets and the socio-economic network of transhumants have a significant temporal impact on transhumance. Water outlets and the socio-economic network have a significant spatial impact. The significant impact of the socio-economic factor demonstrates the social dimension of Sahelian transhumance. Veterinarians and markets have an insignificant spatio-temporal impact. To manage pastoral space, water outlets should be at least 15 km
from each other. The construction of veterinary centers, markets and the securitization of transhumance should be carried out close to villages and rangelands.

Peer reviewed Umwelten Ants

Kit Martin | Published Thursday, January 15, 2015 | Last modified Thursday, August 27, 2015

Simulates impacts of ants killing colony mates when in conflict with another nest. The murder rate is adjustable, and the environmental change is variable. The colonies employ social learning so knowledge diffusion proceeds if interactions occur.

This model is intended to support oak tree management by representing the dynamics of oaks in multiple life stages and their competitors and consumers. This is implemented using a differential equation-based theoretical model representing three life stages of oaks: seedlings, juveniles, and adults. It includes the population dynamics of seedlings transitioning to juveniles, juveniles to adults, and adults producing new seedlings, as well as survival rates for each of the stages. It also includes a model of competition for light and water within seedlings and between seedlings and annual grasses. Finally, there is a predation term representing herbivores eating seedlings and grasses, using a Holling Type II (satiating) response with interference for predators and a death rate which depends on the resource extraction rate.

Agent-based modeling and simulation (ABMS) is a class of computational models for
simulating the actions and interactions of autonomous agents with the goal of assessing
their effects on a system as a whole. Several frameworks for generating parallel ABMS
applications have been developed taking advantage of their common characteristics,
but there is a lack of a general benchmark for comparing the performance of generated
applications. We propose and design a benchmark that takes into consideration the

Agent-based modeling and simulation (ABMS) is a class of computational models for
simulating the actions and interactions of autonomous agents with the goal of assessing
their effects on a system as a whole. Several frameworks for generating parallel ABMS
applications have been developed taking advantage of their common characteristics,
but there is a lack of a general benchmark for comparing the performance of generated
applications. We propose and design a benchmark that takes into consideration the

Displaying 10 of 414 results for "Therese Lindahl" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept