Computational Model Library

Displaying 10 of 951 results for "Chantal van Esch" clear search

Dynamic Interbank Network Simulator

Valentina Guleva | Published Wednesday, November 23, 2016 | Last modified Monday, April 13, 2020

The model provides instruments for the simulation of interbank network evolution. There are tools for dynamic network analysis, allowing to evaluate graph topological invariants, thermodynamic network features and combinational node-based features.

SBH trust model

Di Wang | Published Tuesday, December 14, 2010 | Last modified Saturday, April 27, 2013

This is a computational model to articulate the theory and test some assumption and axioms for the trust model and its relationship to SBH.

An empirical ABM for regional land use/cover change: a Dutch case study

Diego Valbuena | Published Saturday, March 12, 2011 | Last modified Thursday, November 11, 2021

This is an empirical model described in http://dx.doi.org/10.1016/j.landurbplan.2010.05.001. The objective of the model is to simulate how the decision-making of farmers/agents with different strategies can affect the landscape structure in a region in the Netherlands.

Model of Context Switching with Segregation

Davide Nunes | Published Thursday, August 02, 2012 | Last modified Saturday, April 27, 2013

In the context switching model, a society of agents embedded in multiple social relations, engages in a simple abstract game: the consensus game. Each agent has to choose towards one of two possible choices which are basically arbitrary. The objective of the game is to reach a global consensus, but the particular choice that gets collectively selected is irrelevant.

Gini Palma microsimulation

Edgar Oliveira | Published Wednesday, December 11, 2024

The model is a microsimulation, where the agents don’t Interact with each other. It simulates income distribution, unemployment dynamics, education, and Family grant in Brazil, focusing on the impact on social inequality. It tracks the indicators Gini index, Lorenz curve, and Palma ratio. The objective is to explore how these factors influence wealth distribution and social inequality over time.
This work was developed in partnership with the Graduate Program in Computational Modeling, in the Universidade Federal do Rio Grande - FURG, in Brazil.

Competitive Arousal Agent Based Model

Zoé Chollet | Published Friday, May 13, 2022

What is it?

This model demonstrates a very simple bidding market where buyers try to acquire a desired item at the best price in a competitive environment

Institutional change

Abigail Sullivan | Published Friday, October 07, 2016 | Last modified Sunday, December 02, 2018

This model builds on another model in this library (“diffusion of culture”).

Health and social public information office (SPUN) simulation

Emilio Sulis Manuela Vinai | Published Friday, November 06, 2015 | Last modified Saturday, November 07, 2015

The program simulate the functioning of an italian health and social public information office (SPUN) on the basis of the real data collected in the first five years of functioning.

Peer reviewed Lethal Geometry

Kristin Crouse | Published Friday, February 21, 2020 | Last modified Wednesday, December 15, 2021

LethalGeometry was developed to examine whether territory size influences the mortality risk for individuals within that territory. For animals who live in territoral groups and are lethally aggressive, we can expect that most aggression occurs along the periphery (or border) between two adjacent territories. For territories that are relatively large, the periphery makes up a proportionately small amount of the of the total territory size, suggesting that individuals in these territories might be less likely to die from these territorial skirmishes. LethalGeometry examines this geometric relationship between territory size and mortality risk under realistic assumptions of variable territory size and shape, variable border width, and stochastic interactions and movement.

The individuals (agents) are programmed to walk randomly about their environment, search for and eat food to obtain energy, reproduce if they can, and act aggressively toward individuals of other groups. During each simulation step, individuals analyze their environment and internal state to determine which actions to take. The actions available to individuals include moving, fighting, and giving birth.

A Simulation of Entrepreneurial Spawning

Mark Bagley | Published Wednesday, June 08, 2016 | Last modified Friday, June 30, 2017

Industrial clustering patterns are the result of an entrepreneurial process where spinoffs inherit the ideas and attributes of their parent firms. This computational model maps these patterns using abstract methodologies.

Displaying 10 of 951 results for "Chantal van Esch" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept