Computational Model Library

Displaying 10 of 42 results for "Michaela Starkey" clear search

Peer reviewed AgModel

Isaac Ullah | Published Friday, December 06, 2024

AgModel is an agent-based model of the forager-farmer transition. The model consists of a single software agent that, conceptually, can be thought of as a single hunter-gather community (i.e., a co-residential group that shares in subsistence activities and decision making). The agent has several characteristics, including a population of human foragers, intrinsic birth and death rates, an annual total energy need, and an available amount of foraging labor. The model assumes a central-place foraging strategy in a fixed territory for a two-resource economy: cereal grains and prey animals. The territory has a fixed number of patches, and a starting number of prey. While the model is not spatially explicit, it does assume some spatiality of resources by including search times.

Demographic and environmental components of the simulation occur and are updated at an annual temporal resolution, but foraging decisions are “event” based so that many such decisions will be made in each year. Thus, each new year, the foraging agent must undertake a series of optimal foraging decisions based on its current knowledge of the availability of cereals and prey animals. Other resources are not accounted for in the model directly, but can be assumed for by adjusting the total number of required annual energy intake that the foraging agent uses to calculate its cereal and prey animal foraging decisions. The agent proceeds to balance the net benefits of the chance of finding, processing, and consuming a prey animal, versus that of finding a cereal patch, and processing and consuming that cereal. These decisions continue until the annual kcal target is reached (balanced on the current human population). If the agent consumes all available resources in a given year, it may “starve”. Starvation will affect birth and death rates, as will foraging success, and so the population will increase or decrease according to a probabilistic function (perturbed by some stochasticity) and the agent’s foraging success or failure. The agent is also constrained by labor caps, set by the modeler at model initialization. If the agent expends its yearly budget of person-hours for hunting or foraging, then the agent can no longer do those activities that year, and it may starve.

Foragers choose to either expend their annual labor budget either hunting prey animals or harvesting cereal patches. If the agent chooses to harvest prey animals, they will expend energy searching for and processing prey animals. prey animals search times are density dependent, and the number of prey animals per encounter and handling times can be altered in the model parameterization (e.g. to increase the payoff per encounter). Prey animal populations are also subject to intrinsic birth and death rates with the addition of additional deaths caused by human predation. A small amount of prey animals may “migrate” into the territory each year. This prevents prey animals populations from complete decimation, but also may be used to model increased distances of logistic mobility (or, perhaps, even residential mobility within a larger territory).

Confirmation Bias is usually seen as a flaw of the human mind. However, in some tasks, it may also increase performance. Here, agents are confronted with a number of binary Signals (A, or B). They have a base detection rate, e.g. 50%, and after they detected one signal, they get biased towards this type of signal. This means, that they observe that kind of signal a bit better, and the other signal a bit worse. This is moderated by a variable called “bias_effect”, e.g. 10%. So an agent who detects A first, gets biased towards A and then improves its chance to detect A-signals by 10%. Thus, this agent detects A-Signals with the probability of 50%+10% = 60% and detects B-Signals with the probability of 50%-10% = 40%.
Given such a framework, agents that have the ability to be biased have better results in most of the scenarios.

This model aims at creating agent populations that have “personalities”, as described by the Big Five Model of Personality. The expression of the Big Five in the agent population has the following properties, so that they resemble real life populations as closely as possible:
-The population mean of each trait is 0.5 on a scale from 0 to 1.
-The population-wide distribution of each trait approximates a normal distribution.
-The intercorrelations of the Big Five are close to those observed in the Literature.

The literature used to fit the model was a publication by Dimitri van der Linden, Jan te Nijenhuis, and Arnold B. Bakker:

Swidden farming by individual households

C Michael Barton | Published Sunday, April 27, 2008 | Last modified Saturday, April 27, 2013

Swidden Farming is designed to explore the dynamics of agricultural land management strategies.

Patch choice model from Optimal Foraging Theory (Human Behavioral Ecology)

C Michael Barton | Published Saturday, November 22, 2008 | Last modified Saturday, April 27, 2013

NetLogo model of patch choice model from optimal foraging theory (human behavioral ecology).

Diet breadth model from Optimal Foraging Theory (Human Behavioral Ecology)

C Michael Barton | Published Wednesday, November 26, 2008 | Last modified Thursday, March 12, 2015

Diet breadth is a classic optimal foraging theory (OFT) model from human behavioral ecology (HBE). Different resources, ranked according to their food value and processing costs, are distributed in th

Hominin ecodynamics v.2

C Michael Barton | Published Monday, September 19, 2011 | Last modified Friday, March 28, 2014

Simulates biobehavioral interactions between 2 populations of hominins.

Peer reviewed Hominin ecodynamics v.1

C Michael Barton | Published Saturday, October 01, 2011 | Last modified Friday, March 28, 2014

Biobehavioral interactions between two populations under different movement strategies.

Hominin Ecodynamics v.1.1 (update for perception and interaction)

C Michael Barton | Published Wednesday, August 15, 2012 | Last modified Saturday, April 27, 2013

Models land-use, perception, and biocultural interactions between two forager populations.

Peer reviewed Swidden Farming Version 2.0

C Michael Barton | Published Wednesday, June 12, 2013 | Last modified Wednesday, September 03, 2014

Model of shifting cultivation. All parameters can be controlled by the user or the model can be run in adaptive mode, in which agents innovate and select parameters.

Displaying 10 of 42 results for "Michaela Starkey" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept