Using ‘induced intensification’ theory as a benchmark, we develop a generalized agent-based model to investigate mechanistic explanations of relationships between agricultural intensity and population density, environmental suitability, and market influence. Land-use and livelihood decisions modeled from basic micro-economic theories generated spatial and temporal patterns of agricultural intensification consistent with predictions of induced intensification theory. Further, agent actions in response to conditions beyond those described by induced intensification theory were explored, revealing that interactions among environmental constraints, population pressure, and market influence may produce transitions to multiple livelihood regimes of varying market integration. The result is new hypotheses that could modify and enrich understanding of the classic relationship between agricultural intensity and population density. The strength of this agent-based model and the experimental results is the generalized form of the decision-making processes underlying land-use and livelihood transitions, creating the prospect of a virtual laboratory for systematically generating hypotheses of how agent decisions and interactions relate to observed land-use and livelihood patterns across diverse land systems.
Release Notes
ABVL v0.1
Associated Publications
Magliocca NR, Brown DG, Ellis EC (2013) Exploring Agricultural Livelihood Transitions with an Agent-Based Virtual Laboratory: Global Forces to Local Decision-Making. PLoS ONE 8(9): e73241. doi:10.1371/journal.pone.0073241
This release is out-of-date. The latest version is
1.1.0
Land-Livelihood Transitions 1.0.0
Submitted byNicholas MaglioccaPublished Sep 09, 2013
Last modified Feb 23, 2018
Using ‘induced intensification’ theory as a benchmark, we develop a generalized agent-based model to investigate mechanistic explanations of relationships between agricultural intensity and population density, environmental suitability, and market influence. Land-use and livelihood decisions modeled from basic micro-economic theories generated spatial and temporal patterns of agricultural intensification consistent with predictions of induced intensification theory. Further, agent actions in response to conditions beyond those described by induced intensification theory were explored, revealing that interactions among environmental constraints, population pressure, and market influence may produce transitions to multiple livelihood regimes of varying market integration. The result is new hypotheses that could modify and enrich understanding of the classic relationship between agricultural intensity and population density. The strength of this agent-based model and the experimental results is the generalized form of the decision-making processes underlying land-use and livelihood transitions, creating the prospect of a virtual laboratory for systematically generating hypotheses of how agent decisions and interactions relate to observed land-use and livelihood patterns across diverse land systems.
Release Notes
ABVL v0.1
Cite this Model
Nicholas Magliocca, Daniel G Brown, Erle C Ellis (2013, September 09). “Land-Livelihood Transitions” (Version 1.0.0). CoMSES Computational Model Library. Retrieved from: https://www.comses.net/codebases/3939/releases/1.0.0/
Associated Publication(s)
Magliocca NR, Brown DG, Ellis EC (2013) Exploring Agricultural Livelihood Transitions with an Agent-Based Virtual Laboratory: Global Forces to Local Decision-Making. PLoS ONE 8(9): e73241. doi:10.1371/journal.pone.0073241
Create an Open Code Badge that links to this model more info
This model has not been reviewed by CoMSES Net and should be independently reviewed to
meet the Open Code Badge guidelines.
You can use the following HTML or Markdown code to create an Open Code Badge that links to
version 1.0.0
of this computational model.
This website uses cookies and Google Analytics to help us track user engagement and improve our site. If
you'd like to know more information about what data we collect and why, please see
our data privacy policy. If you continue to use this site, you consent to
our use of cookies.